Metamath Proof Explorer


Theorem restclsseplem

Description: Lemma for restclssep . (Contributed by Zhi Wang, 2-Sep-2024)

Ref Expression
Hypotheses restcls2.1
|- ( ph -> J e. Top )
restcls2.2
|- ( ph -> X = U. J )
restcls2.3
|- ( ph -> Y C_ X )
restcls2.4
|- ( ph -> K = ( J |`t Y ) )
restcls2.5
|- ( ph -> S e. ( Clsd ` K ) )
restclsseplem.6
|- ( ph -> ( S i^i T ) = (/) )
restclsseplem.7
|- ( ph -> T C_ Y )
Assertion restclsseplem
|- ( ph -> ( ( ( cls ` J ) ` S ) i^i T ) = (/) )

Proof

Step Hyp Ref Expression
1 restcls2.1
 |-  ( ph -> J e. Top )
2 restcls2.2
 |-  ( ph -> X = U. J )
3 restcls2.3
 |-  ( ph -> Y C_ X )
4 restcls2.4
 |-  ( ph -> K = ( J |`t Y ) )
5 restcls2.5
 |-  ( ph -> S e. ( Clsd ` K ) )
6 restclsseplem.6
 |-  ( ph -> ( S i^i T ) = (/) )
7 restclsseplem.7
 |-  ( ph -> T C_ Y )
8 1 2 3 4 5 restcls2
 |-  ( ph -> S = ( ( ( cls ` J ) ` S ) i^i Y ) )
9 8 ineq1d
 |-  ( ph -> ( S i^i T ) = ( ( ( ( cls ` J ) ` S ) i^i Y ) i^i T ) )
10 inass
 |-  ( ( ( ( cls ` J ) ` S ) i^i Y ) i^i T ) = ( ( ( cls ` J ) ` S ) i^i ( Y i^i T ) )
11 9 10 eqtrdi
 |-  ( ph -> ( S i^i T ) = ( ( ( cls ` J ) ` S ) i^i ( Y i^i T ) ) )
12 sseqin2
 |-  ( T C_ Y <-> ( Y i^i T ) = T )
13 7 12 sylib
 |-  ( ph -> ( Y i^i T ) = T )
14 13 ineq2d
 |-  ( ph -> ( ( ( cls ` J ) ` S ) i^i ( Y i^i T ) ) = ( ( ( cls ` J ) ` S ) i^i T ) )
15 11 6 14 3eqtr3rd
 |-  ( ph -> ( ( ( cls ` J ) ` S ) i^i T ) = (/) )