Step |
Hyp |
Ref |
Expression |
1 |
|
restcls2.1 |
|- ( ph -> J e. Top ) |
2 |
|
restcls2.2 |
|- ( ph -> X = U. J ) |
3 |
|
restcls2.3 |
|- ( ph -> Y C_ X ) |
4 |
|
restcls2.4 |
|- ( ph -> K = ( J |`t Y ) ) |
5 |
|
restcls2.5 |
|- ( ph -> S e. ( Clsd ` K ) ) |
6 |
|
restclsseplem.6 |
|- ( ph -> ( S i^i T ) = (/) ) |
7 |
|
restclsseplem.7 |
|- ( ph -> T C_ Y ) |
8 |
1 2 3 4 5
|
restcls2 |
|- ( ph -> S = ( ( ( cls ` J ) ` S ) i^i Y ) ) |
9 |
8
|
ineq1d |
|- ( ph -> ( S i^i T ) = ( ( ( ( cls ` J ) ` S ) i^i Y ) i^i T ) ) |
10 |
|
inass |
|- ( ( ( ( cls ` J ) ` S ) i^i Y ) i^i T ) = ( ( ( cls ` J ) ` S ) i^i ( Y i^i T ) ) |
11 |
9 10
|
eqtrdi |
|- ( ph -> ( S i^i T ) = ( ( ( cls ` J ) ` S ) i^i ( Y i^i T ) ) ) |
12 |
|
sseqin2 |
|- ( T C_ Y <-> ( Y i^i T ) = T ) |
13 |
7 12
|
sylib |
|- ( ph -> ( Y i^i T ) = T ) |
14 |
13
|
ineq2d |
|- ( ph -> ( ( ( cls ` J ) ` S ) i^i ( Y i^i T ) ) = ( ( ( cls ` J ) ` S ) i^i T ) ) |
15 |
11 6 14
|
3eqtr3rd |
|- ( ph -> ( ( ( cls ` J ) ` S ) i^i T ) = (/) ) |