| Step |
Hyp |
Ref |
Expression |
| 1 |
|
restcls2.1 |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 2 |
|
restcls2.2 |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 3 |
|
restcls2.3 |
⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 4 |
|
restcls2.4 |
⊢ ( 𝜑 → 𝐾 = ( 𝐽 ↾t 𝑌 ) ) |
| 5 |
|
restcls2.5 |
⊢ ( 𝜑 → 𝑆 ∈ ( Clsd ‘ 𝐾 ) ) |
| 6 |
|
restclsseplem.6 |
⊢ ( 𝜑 → ( 𝑆 ∩ 𝑇 ) = ∅ ) |
| 7 |
|
restclsseplem.7 |
⊢ ( 𝜑 → 𝑇 ⊆ 𝑌 ) |
| 8 |
1 2 3 4 5
|
restcls2 |
⊢ ( 𝜑 → 𝑆 = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ) |
| 9 |
8
|
ineq1d |
⊢ ( 𝜑 → ( 𝑆 ∩ 𝑇 ) = ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ∩ 𝑇 ) ) |
| 10 |
|
inass |
⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑌 ) ∩ 𝑇 ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( 𝑌 ∩ 𝑇 ) ) |
| 11 |
9 10
|
eqtrdi |
⊢ ( 𝜑 → ( 𝑆 ∩ 𝑇 ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( 𝑌 ∩ 𝑇 ) ) ) |
| 12 |
|
sseqin2 |
⊢ ( 𝑇 ⊆ 𝑌 ↔ ( 𝑌 ∩ 𝑇 ) = 𝑇 ) |
| 13 |
7 12
|
sylib |
⊢ ( 𝜑 → ( 𝑌 ∩ 𝑇 ) = 𝑇 ) |
| 14 |
13
|
ineq2d |
⊢ ( 𝜑 → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( 𝑌 ∩ 𝑇 ) ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑇 ) ) |
| 15 |
11 6 14
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑇 ) = ∅ ) |