Metamath Proof Explorer


Theorem restclssep

Description: Two disjoint closed sets in a subspace topology are separated in the original topology. (Contributed by Zhi Wang, 2-Sep-2024)

Ref Expression
Hypotheses restcls2.1 φJTop
restcls2.2 φX=J
restcls2.3 φYX
restcls2.4 φK=J𝑡Y
restcls2.5 φSClsdK
restclsseplem.6 φST=
restclssep.7 φTClsdK
Assertion restclssep φSclsJT=clsJST=

Proof

Step Hyp Ref Expression
1 restcls2.1 φJTop
2 restcls2.2 φX=J
3 restcls2.3 φYX
4 restcls2.4 φK=J𝑡Y
5 restcls2.5 φSClsdK
6 restclsseplem.6 φST=
7 restclssep.7 φTClsdK
8 incom clsJTS=SclsJT
9 incom ST=TS
10 9 6 eqtr3id φTS=
11 1 2 3 4 5 restcls2lem φSY
12 1 2 3 4 7 10 11 restclsseplem φclsJTS=
13 8 12 eqtr3id φSclsJT=
14 1 2 3 4 7 restcls2lem φTY
15 1 2 3 4 5 6 14 restclsseplem φclsJST=
16 13 15 jca φSclsJT=clsJST=