Metamath Proof Explorer


Theorem iscnrm3lem6

Description: Lemma for iscnrm3lem7 . (Contributed by Zhi Wang, 5-Sep-2024)

Ref Expression
Hypothesis iscnrm3lem6.1
|- ( ( ph /\ ( x e. V /\ y e. W ) /\ ps ) -> ch )
Assertion iscnrm3lem6
|- ( ph -> ( E. x e. V E. y e. W ps -> ch ) )

Proof

Step Hyp Ref Expression
1 iscnrm3lem6.1
 |-  ( ( ph /\ ( x e. V /\ y e. W ) /\ ps ) -> ch )
2 1 3exp
 |-  ( ph -> ( ( x e. V /\ y e. W ) -> ( ps -> ch ) ) )
3 2 rexlimdvv
 |-  ( ph -> ( E. x e. V E. y e. W ps -> ch ) )