Metamath Proof Explorer


Theorem iscnrm3lem7

Description: Lemma for iscnrm3rlem8 and iscnrm3llem2 involving restricted existential quantifications. (Contributed by Zhi Wang, 5-Sep-2024)

Ref Expression
Hypotheses iscnrm3lem7.1
|- ( z = Z -> ( ch <-> th ) )
iscnrm3lem7.2
|- ( w = W -> ( th <-> ta ) )
iscnrm3lem7.3
|- ( ( ph /\ ( x e. A /\ y e. B ) /\ ps ) -> ( Z e. C /\ W e. D /\ ta ) )
Assertion iscnrm3lem7
|- ( ph -> ( E. x e. A E. y e. B ps -> E. z e. C E. w e. D ch ) )

Proof

Step Hyp Ref Expression
1 iscnrm3lem7.1
 |-  ( z = Z -> ( ch <-> th ) )
2 iscnrm3lem7.2
 |-  ( w = W -> ( th <-> ta ) )
3 iscnrm3lem7.3
 |-  ( ( ph /\ ( x e. A /\ y e. B ) /\ ps ) -> ( Z e. C /\ W e. D /\ ta ) )
4 1 2 rspc2ev
 |-  ( ( Z e. C /\ W e. D /\ ta ) -> E. z e. C E. w e. D ch )
5 3 4 syl
 |-  ( ( ph /\ ( x e. A /\ y e. B ) /\ ps ) -> E. z e. C E. w e. D ch )
6 5 iscnrm3lem6
 |-  ( ph -> ( E. x e. A E. y e. B ps -> E. z e. C E. w e. D ch ) )