Description: Lemma for iscnrm3rlem8 and iscnrm3llem2 involving restricted existential quantifications. (Contributed by Zhi Wang, 5-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscnrm3lem7.1 | |- ( z = Z -> ( ch <-> th ) ) |
|
| iscnrm3lem7.2 | |- ( w = W -> ( th <-> ta ) ) |
||
| iscnrm3lem7.3 | |- ( ( ph /\ ( x e. A /\ y e. B ) /\ ps ) -> ( Z e. C /\ W e. D /\ ta ) ) |
||
| Assertion | iscnrm3lem7 | |- ( ph -> ( E. x e. A E. y e. B ps -> E. z e. C E. w e. D ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscnrm3lem7.1 | |- ( z = Z -> ( ch <-> th ) ) |
|
| 2 | iscnrm3lem7.2 | |- ( w = W -> ( th <-> ta ) ) |
|
| 3 | iscnrm3lem7.3 | |- ( ( ph /\ ( x e. A /\ y e. B ) /\ ps ) -> ( Z e. C /\ W e. D /\ ta ) ) |
|
| 4 | 1 2 | rspc2ev | |- ( ( Z e. C /\ W e. D /\ ta ) -> E. z e. C E. w e. D ch ) |
| 5 | 3 4 | syl | |- ( ( ph /\ ( x e. A /\ y e. B ) /\ ps ) -> E. z e. C E. w e. D ch ) |
| 6 | 5 | iscnrm3lem6 | |- ( ph -> ( E. x e. A E. y e. B ps -> E. z e. C E. w e. D ch ) ) |