Step |
Hyp |
Ref |
Expression |
1 |
|
iscnrm3rlem1.1 |
|- ( ph -> S C_ X ) |
2 |
|
difindi |
|- ( X \ ( S i^i T ) ) = ( ( X \ S ) u. ( X \ T ) ) |
3 |
2
|
ineq2i |
|- ( S i^i ( X \ ( S i^i T ) ) ) = ( S i^i ( ( X \ S ) u. ( X \ T ) ) ) |
4 |
|
indi |
|- ( S i^i ( ( X \ S ) u. ( X \ T ) ) ) = ( ( S i^i ( X \ S ) ) u. ( S i^i ( X \ T ) ) ) |
5 |
|
disjdif |
|- ( S i^i ( X \ S ) ) = (/) |
6 |
5
|
uneq1i |
|- ( ( S i^i ( X \ S ) ) u. ( S i^i ( X \ T ) ) ) = ( (/) u. ( S i^i ( X \ T ) ) ) |
7 |
|
0un |
|- ( (/) u. ( S i^i ( X \ T ) ) ) = ( S i^i ( X \ T ) ) |
8 |
|
indif2 |
|- ( S i^i ( X \ T ) ) = ( ( S i^i X ) \ T ) |
9 |
6 7 8
|
3eqtri |
|- ( ( S i^i ( X \ S ) ) u. ( S i^i ( X \ T ) ) ) = ( ( S i^i X ) \ T ) |
10 |
3 4 9
|
3eqtri |
|- ( S i^i ( X \ ( S i^i T ) ) ) = ( ( S i^i X ) \ T ) |
11 |
|
df-ss |
|- ( S C_ X <-> ( S i^i X ) = S ) |
12 |
1 11
|
sylib |
|- ( ph -> ( S i^i X ) = S ) |
13 |
12
|
difeq1d |
|- ( ph -> ( ( S i^i X ) \ T ) = ( S \ T ) ) |
14 |
10 13
|
eqtr2id |
|- ( ph -> ( S \ T ) = ( S i^i ( X \ ( S i^i T ) ) ) ) |