| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscnrm3rlem1.1 |
⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) |
| 2 |
|
difindi |
⊢ ( 𝑋 ∖ ( 𝑆 ∩ 𝑇 ) ) = ( ( 𝑋 ∖ 𝑆 ) ∪ ( 𝑋 ∖ 𝑇 ) ) |
| 3 |
2
|
ineq2i |
⊢ ( 𝑆 ∩ ( 𝑋 ∖ ( 𝑆 ∩ 𝑇 ) ) ) = ( 𝑆 ∩ ( ( 𝑋 ∖ 𝑆 ) ∪ ( 𝑋 ∖ 𝑇 ) ) ) |
| 4 |
|
indi |
⊢ ( 𝑆 ∩ ( ( 𝑋 ∖ 𝑆 ) ∪ ( 𝑋 ∖ 𝑇 ) ) ) = ( ( 𝑆 ∩ ( 𝑋 ∖ 𝑆 ) ) ∪ ( 𝑆 ∩ ( 𝑋 ∖ 𝑇 ) ) ) |
| 5 |
|
disjdif |
⊢ ( 𝑆 ∩ ( 𝑋 ∖ 𝑆 ) ) = ∅ |
| 6 |
5
|
uneq1i |
⊢ ( ( 𝑆 ∩ ( 𝑋 ∖ 𝑆 ) ) ∪ ( 𝑆 ∩ ( 𝑋 ∖ 𝑇 ) ) ) = ( ∅ ∪ ( 𝑆 ∩ ( 𝑋 ∖ 𝑇 ) ) ) |
| 7 |
|
0un |
⊢ ( ∅ ∪ ( 𝑆 ∩ ( 𝑋 ∖ 𝑇 ) ) ) = ( 𝑆 ∩ ( 𝑋 ∖ 𝑇 ) ) |
| 8 |
|
indif2 |
⊢ ( 𝑆 ∩ ( 𝑋 ∖ 𝑇 ) ) = ( ( 𝑆 ∩ 𝑋 ) ∖ 𝑇 ) |
| 9 |
6 7 8
|
3eqtri |
⊢ ( ( 𝑆 ∩ ( 𝑋 ∖ 𝑆 ) ) ∪ ( 𝑆 ∩ ( 𝑋 ∖ 𝑇 ) ) ) = ( ( 𝑆 ∩ 𝑋 ) ∖ 𝑇 ) |
| 10 |
3 4 9
|
3eqtri |
⊢ ( 𝑆 ∩ ( 𝑋 ∖ ( 𝑆 ∩ 𝑇 ) ) ) = ( ( 𝑆 ∩ 𝑋 ) ∖ 𝑇 ) |
| 11 |
|
dfss2 |
⊢ ( 𝑆 ⊆ 𝑋 ↔ ( 𝑆 ∩ 𝑋 ) = 𝑆 ) |
| 12 |
1 11
|
sylib |
⊢ ( 𝜑 → ( 𝑆 ∩ 𝑋 ) = 𝑆 ) |
| 13 |
12
|
difeq1d |
⊢ ( 𝜑 → ( ( 𝑆 ∩ 𝑋 ) ∖ 𝑇 ) = ( 𝑆 ∖ 𝑇 ) ) |
| 14 |
10 13
|
eqtr2id |
⊢ ( 𝜑 → ( 𝑆 ∖ 𝑇 ) = ( 𝑆 ∩ ( 𝑋 ∖ ( 𝑆 ∩ 𝑇 ) ) ) ) |