Metamath Proof Explorer


Theorem iscnrm3rlem1

Description: Lemma for iscnrm3rlem2 . The hypothesis could be generalized to ( ph -> ( S \ T ) C_ X ) . (Contributed by Zhi Wang, 5-Sep-2024)

Ref Expression
Hypothesis iscnrm3rlem1.1 ( 𝜑𝑆𝑋 )
Assertion iscnrm3rlem1 ( 𝜑 → ( 𝑆𝑇 ) = ( 𝑆 ∩ ( 𝑋 ∖ ( 𝑆𝑇 ) ) ) )

Proof

Step Hyp Ref Expression
1 iscnrm3rlem1.1 ( 𝜑𝑆𝑋 )
2 difindi ( 𝑋 ∖ ( 𝑆𝑇 ) ) = ( ( 𝑋𝑆 ) ∪ ( 𝑋𝑇 ) )
3 2 ineq2i ( 𝑆 ∩ ( 𝑋 ∖ ( 𝑆𝑇 ) ) ) = ( 𝑆 ∩ ( ( 𝑋𝑆 ) ∪ ( 𝑋𝑇 ) ) )
4 indi ( 𝑆 ∩ ( ( 𝑋𝑆 ) ∪ ( 𝑋𝑇 ) ) ) = ( ( 𝑆 ∩ ( 𝑋𝑆 ) ) ∪ ( 𝑆 ∩ ( 𝑋𝑇 ) ) )
5 disjdif ( 𝑆 ∩ ( 𝑋𝑆 ) ) = ∅
6 5 uneq1i ( ( 𝑆 ∩ ( 𝑋𝑆 ) ) ∪ ( 𝑆 ∩ ( 𝑋𝑇 ) ) ) = ( ∅ ∪ ( 𝑆 ∩ ( 𝑋𝑇 ) ) )
7 0un ( ∅ ∪ ( 𝑆 ∩ ( 𝑋𝑇 ) ) ) = ( 𝑆 ∩ ( 𝑋𝑇 ) )
8 indif2 ( 𝑆 ∩ ( 𝑋𝑇 ) ) = ( ( 𝑆𝑋 ) ∖ 𝑇 )
9 6 7 8 3eqtri ( ( 𝑆 ∩ ( 𝑋𝑆 ) ) ∪ ( 𝑆 ∩ ( 𝑋𝑇 ) ) ) = ( ( 𝑆𝑋 ) ∖ 𝑇 )
10 3 4 9 3eqtri ( 𝑆 ∩ ( 𝑋 ∖ ( 𝑆𝑇 ) ) ) = ( ( 𝑆𝑋 ) ∖ 𝑇 )
11 df-ss ( 𝑆𝑋 ↔ ( 𝑆𝑋 ) = 𝑆 )
12 1 11 sylib ( 𝜑 → ( 𝑆𝑋 ) = 𝑆 )
13 12 difeq1d ( 𝜑 → ( ( 𝑆𝑋 ) ∖ 𝑇 ) = ( 𝑆𝑇 ) )
14 10 13 syl5req ( 𝜑 → ( 𝑆𝑇 ) = ( 𝑆 ∩ ( 𝑋 ∖ ( 𝑆𝑇 ) ) ) )