Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Zhi Wang
Topology
Separated spaces: T0, T1, T2 (Hausdorff) ...
iscnrm3lem6
Next ⟩
iscnrm3lem7
Metamath Proof Explorer
Ascii
Unicode
Theorem
iscnrm3lem6
Description:
Lemma for
iscnrm3lem7
.
(Contributed by
Zhi Wang
, 5-Sep-2024)
Ref
Expression
Hypothesis
iscnrm3lem6.1
⊢
φ
∧
x
∈
V
∧
y
∈
W
∧
ψ
→
χ
Assertion
iscnrm3lem6
⊢
φ
→
∃
x
∈
V
∃
y
∈
W
ψ
→
χ
Proof
Step
Hyp
Ref
Expression
1
iscnrm3lem6.1
⊢
φ
∧
x
∈
V
∧
y
∈
W
∧
ψ
→
χ
2
1
3exp
⊢
φ
→
x
∈
V
∧
y
∈
W
→
ψ
→
χ
3
2
rexlimdvv
⊢
φ
→
∃
x
∈
V
∃
y
∈
W
ψ
→
χ