Description: Lemma for iscnrm3lem7 . (Contributed by Zhi Wang, 5-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypothesis | iscnrm3lem6.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑊 ) ∧ 𝜓 ) → 𝜒 ) | |
Assertion | iscnrm3lem6 | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑊 𝜓 → 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscnrm3lem6.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑊 ) ∧ 𝜓 ) → 𝜒 ) | |
2 | 1 | 3exp | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑊 ) → ( 𝜓 → 𝜒 ) ) ) |
3 | 2 | rexlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑉 ∃ 𝑦 ∈ 𝑊 𝜓 → 𝜒 ) ) |