Metamath Proof Explorer


Theorem iscnrm3lem6

Description: Lemma for iscnrm3lem7 . (Contributed by Zhi Wang, 5-Sep-2024)

Ref Expression
Hypothesis iscnrm3lem6.1 ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑊 ) ∧ 𝜓 ) → 𝜒 )
Assertion iscnrm3lem6 ( 𝜑 → ( ∃ 𝑥𝑉𝑦𝑊 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 iscnrm3lem6.1 ( ( 𝜑 ∧ ( 𝑥𝑉𝑦𝑊 ) ∧ 𝜓 ) → 𝜒 )
2 1 3exp ( 𝜑 → ( ( 𝑥𝑉𝑦𝑊 ) → ( 𝜓𝜒 ) ) )
3 2 rexlimdvv ( 𝜑 → ( ∃ 𝑥𝑉𝑦𝑊 𝜓𝜒 ) )