Metamath Proof Explorer


Theorem iscnrm3v

Description: A topology is completely normal iff two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 10-Sep-2024)

Ref Expression
Assertion iscnrm3v
|- ( J e. Top -> ( J e. CNrm <-> A. s e. ~P U. J A. t e. ~P U. J ( ( ( s i^i ( ( cls ` J ) ` t ) ) = (/) /\ ( ( ( cls ` J ) ` s ) i^i t ) = (/) ) -> E. n e. J E. m e. J ( s C_ n /\ t C_ m /\ ( n i^i m ) = (/) ) ) ) )

Proof

Step Hyp Ref Expression
1 iscnrm3
 |-  ( J e. CNrm <-> ( J e. Top /\ A. s e. ~P U. J A. t e. ~P U. J ( ( ( s i^i ( ( cls ` J ) ` t ) ) = (/) /\ ( ( ( cls ` J ) ` s ) i^i t ) = (/) ) -> E. n e. J E. m e. J ( s C_ n /\ t C_ m /\ ( n i^i m ) = (/) ) ) ) )
2 1 baib
 |-  ( J e. Top -> ( J e. CNrm <-> A. s e. ~P U. J A. t e. ~P U. J ( ( ( s i^i ( ( cls ` J ) ` t ) ) = (/) /\ ( ( ( cls ` J ) ` s ) i^i t ) = (/) ) -> E. n e. J E. m e. J ( s C_ n /\ t C_ m /\ ( n i^i m ) = (/) ) ) ) )