Metamath Proof Explorer


Theorem iscnrm3v

Description: A topology is completely normal iff two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 10-Sep-2024)

Ref Expression
Assertion iscnrm3v ( 𝐽 ∈ Top → ( 𝐽 ∈ CNrm ↔ ∀ 𝑠 ∈ 𝒫 𝐽𝑡 ∈ 𝒫 𝐽 ( ( ( 𝑠 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ) = ∅ ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ∩ 𝑡 ) = ∅ ) → ∃ 𝑛𝐽𝑚𝐽 ( 𝑠𝑛𝑡𝑚 ∧ ( 𝑛𝑚 ) = ∅ ) ) ) )

Proof

Step Hyp Ref Expression
1 iscnrm3 ( 𝐽 ∈ CNrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑠 ∈ 𝒫 𝐽𝑡 ∈ 𝒫 𝐽 ( ( ( 𝑠 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ) = ∅ ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ∩ 𝑡 ) = ∅ ) → ∃ 𝑛𝐽𝑚𝐽 ( 𝑠𝑛𝑡𝑚 ∧ ( 𝑛𝑚 ) = ∅ ) ) ) )
2 1 baib ( 𝐽 ∈ Top → ( 𝐽 ∈ CNrm ↔ ∀ 𝑠 ∈ 𝒫 𝐽𝑡 ∈ 𝒫 𝐽 ( ( ( 𝑠 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ) = ∅ ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ∩ 𝑡 ) = ∅ ) → ∃ 𝑛𝐽𝑚𝐽 ( 𝑠𝑛𝑡𝑚 ∧ ( 𝑛𝑚 ) = ∅ ) ) ) )