Description: A topology is completely normal iff two separated sets can be separated by open neighborhoods. (Contributed by Zhi Wang, 10-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | iscnrm3v | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ CNrm ↔ ∀ 𝑠 ∈ 𝒫 ∪ 𝐽 ∀ 𝑡 ∈ 𝒫 ∪ 𝐽 ( ( ( 𝑠 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ) = ∅ ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ∩ 𝑡 ) = ∅ ) → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscnrm3 | ⊢ ( 𝐽 ∈ CNrm ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑠 ∈ 𝒫 ∪ 𝐽 ∀ 𝑡 ∈ 𝒫 ∪ 𝐽 ( ( ( 𝑠 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ) = ∅ ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ∩ 𝑡 ) = ∅ ) → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) ) | |
2 | 1 | baib | ⊢ ( 𝐽 ∈ Top → ( 𝐽 ∈ CNrm ↔ ∀ 𝑠 ∈ 𝒫 ∪ 𝐽 ∀ 𝑡 ∈ 𝒫 ∪ 𝐽 ( ( ( 𝑠 ∩ ( ( cls ‘ 𝐽 ) ‘ 𝑡 ) ) = ∅ ∧ ( ( ( cls ‘ 𝐽 ) ‘ 𝑠 ) ∩ 𝑡 ) = ∅ ) → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑠 ⊆ 𝑛 ∧ 𝑡 ⊆ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) ) |