Step |
Hyp |
Ref |
Expression |
1 |
|
isconn.1 |
|- X = U. J |
2 |
|
id |
|- ( j = J -> j = J ) |
3 |
|
fveq2 |
|- ( j = J -> ( Clsd ` j ) = ( Clsd ` J ) ) |
4 |
2 3
|
ineq12d |
|- ( j = J -> ( j i^i ( Clsd ` j ) ) = ( J i^i ( Clsd ` J ) ) ) |
5 |
|
unieq |
|- ( j = J -> U. j = U. J ) |
6 |
5 1
|
eqtr4di |
|- ( j = J -> U. j = X ) |
7 |
6
|
preq2d |
|- ( j = J -> { (/) , U. j } = { (/) , X } ) |
8 |
4 7
|
eqeq12d |
|- ( j = J -> ( ( j i^i ( Clsd ` j ) ) = { (/) , U. j } <-> ( J i^i ( Clsd ` J ) ) = { (/) , X } ) ) |
9 |
|
df-conn |
|- Conn = { j e. Top | ( j i^i ( Clsd ` j ) ) = { (/) , U. j } } |
10 |
8 9
|
elrab2 |
|- ( J e. Conn <-> ( J e. Top /\ ( J i^i ( Clsd ` J ) ) = { (/) , X } ) ) |