Metamath Proof Explorer


Theorem isfin7

Description: Definition of a VII-finite set. (Contributed by Stefan O'Rear, 16-May-2015)

Ref Expression
Assertion isfin7
|- ( A e. V -> ( A e. Fin7 <-> -. E. y e. ( On \ _om ) A ~~ y ) )

Proof

Step Hyp Ref Expression
1 breq1
 |-  ( x = A -> ( x ~~ y <-> A ~~ y ) )
2 1 rexbidv
 |-  ( x = A -> ( E. y e. ( On \ _om ) x ~~ y <-> E. y e. ( On \ _om ) A ~~ y ) )
3 2 notbid
 |-  ( x = A -> ( -. E. y e. ( On \ _om ) x ~~ y <-> -. E. y e. ( On \ _om ) A ~~ y ) )
4 df-fin7
 |-  Fin7 = { x | -. E. y e. ( On \ _om ) x ~~ y }
5 3 4 elab2g
 |-  ( A e. V -> ( A e. Fin7 <-> -. E. y e. ( On \ _om ) A ~~ y ) )