Description: The predicate "is a lattice plane" for join of atoms. Version of islpln2a expressed with an abbreviation hypothesis. (Contributed by NM, 30-Jul-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | islpln2a.l | |- .<_ = ( le ` K ) |
|
islpln2a.j | |- .\/ = ( join ` K ) |
||
islpln2a.a | |- A = ( Atoms ` K ) |
||
islpln2a.p | |- P = ( LPlanes ` K ) |
||
islpln2a.y | |- Y = ( ( Q .\/ R ) .\/ S ) |
||
Assertion | islpln2ah | |- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( Y e. P <-> ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islpln2a.l | |- .<_ = ( le ` K ) |
|
2 | islpln2a.j | |- .\/ = ( join ` K ) |
|
3 | islpln2a.a | |- A = ( Atoms ` K ) |
|
4 | islpln2a.p | |- P = ( LPlanes ` K ) |
|
5 | islpln2a.y | |- Y = ( ( Q .\/ R ) .\/ S ) |
|
6 | 5 | eleq1i | |- ( Y e. P <-> ( ( Q .\/ R ) .\/ S ) e. P ) |
7 | 1 2 3 4 | islpln2a | |- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( ( ( Q .\/ R ) .\/ S ) e. P <-> ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) ) |
8 | 6 7 | syl5bb | |- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ S e. A ) ) -> ( Y e. P <-> ( Q =/= R /\ -. S .<_ ( Q .\/ R ) ) ) ) |