Description: An ordered field is a field with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | isofld | |- ( F e. oField <-> ( F e. Field /\ F e. oRing ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ofld | |- oField = ( Field i^i oRing ) |
|
2 | 1 | elin2 | |- ( F e. oField <-> ( F e. Field /\ F e. oRing ) ) |