Step |
Hyp |
Ref |
Expression |
1 |
|
orngmul.0 |
|- B = ( Base ` R ) |
2 |
|
orngmul.1 |
|- .<_ = ( le ` R ) |
3 |
|
orngmul.2 |
|- .0. = ( 0g ` R ) |
4 |
|
orngmul.3 |
|- .x. = ( .r ` R ) |
5 |
|
simp2r |
|- ( ( R e. oRing /\ ( X e. B /\ .0. .<_ X ) /\ ( Y e. B /\ .0. .<_ Y ) ) -> .0. .<_ X ) |
6 |
|
simp3r |
|- ( ( R e. oRing /\ ( X e. B /\ .0. .<_ X ) /\ ( Y e. B /\ .0. .<_ Y ) ) -> .0. .<_ Y ) |
7 |
|
simp2l |
|- ( ( R e. oRing /\ ( X e. B /\ .0. .<_ X ) /\ ( Y e. B /\ .0. .<_ Y ) ) -> X e. B ) |
8 |
|
simp3l |
|- ( ( R e. oRing /\ ( X e. B /\ .0. .<_ X ) /\ ( Y e. B /\ .0. .<_ Y ) ) -> Y e. B ) |
9 |
1 3 4 2
|
isorng |
|- ( R e. oRing <-> ( R e. Ring /\ R e. oGrp /\ A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) ) |
10 |
9
|
simp3bi |
|- ( R e. oRing -> A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) |
11 |
10
|
3ad2ant1 |
|- ( ( R e. oRing /\ ( X e. B /\ .0. .<_ X ) /\ ( Y e. B /\ .0. .<_ Y ) ) -> A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) |
12 |
|
breq2 |
|- ( a = X -> ( .0. .<_ a <-> .0. .<_ X ) ) |
13 |
12
|
anbi1d |
|- ( a = X -> ( ( .0. .<_ a /\ .0. .<_ b ) <-> ( .0. .<_ X /\ .0. .<_ b ) ) ) |
14 |
|
oveq1 |
|- ( a = X -> ( a .x. b ) = ( X .x. b ) ) |
15 |
14
|
breq2d |
|- ( a = X -> ( .0. .<_ ( a .x. b ) <-> .0. .<_ ( X .x. b ) ) ) |
16 |
13 15
|
imbi12d |
|- ( a = X -> ( ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) <-> ( ( .0. .<_ X /\ .0. .<_ b ) -> .0. .<_ ( X .x. b ) ) ) ) |
17 |
|
breq2 |
|- ( b = Y -> ( .0. .<_ b <-> .0. .<_ Y ) ) |
18 |
17
|
anbi2d |
|- ( b = Y -> ( ( .0. .<_ X /\ .0. .<_ b ) <-> ( .0. .<_ X /\ .0. .<_ Y ) ) ) |
19 |
|
oveq2 |
|- ( b = Y -> ( X .x. b ) = ( X .x. Y ) ) |
20 |
19
|
breq2d |
|- ( b = Y -> ( .0. .<_ ( X .x. b ) <-> .0. .<_ ( X .x. Y ) ) ) |
21 |
18 20
|
imbi12d |
|- ( b = Y -> ( ( ( .0. .<_ X /\ .0. .<_ b ) -> .0. .<_ ( X .x. b ) ) <-> ( ( .0. .<_ X /\ .0. .<_ Y ) -> .0. .<_ ( X .x. Y ) ) ) ) |
22 |
16 21
|
rspc2va |
|- ( ( ( X e. B /\ Y e. B ) /\ A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) -> ( ( .0. .<_ X /\ .0. .<_ Y ) -> .0. .<_ ( X .x. Y ) ) ) |
23 |
7 8 11 22
|
syl21anc |
|- ( ( R e. oRing /\ ( X e. B /\ .0. .<_ X ) /\ ( Y e. B /\ .0. .<_ Y ) ) -> ( ( .0. .<_ X /\ .0. .<_ Y ) -> .0. .<_ ( X .x. Y ) ) ) |
24 |
5 6 23
|
mp2and |
|- ( ( R e. oRing /\ ( X e. B /\ .0. .<_ X ) /\ ( Y e. B /\ .0. .<_ Y ) ) -> .0. .<_ ( X .x. Y ) ) |