Step |
Hyp |
Ref |
Expression |
1 |
|
isorng.0 |
|- B = ( Base ` R ) |
2 |
|
isorng.1 |
|- .0. = ( 0g ` R ) |
3 |
|
isorng.2 |
|- .x. = ( .r ` R ) |
4 |
|
isorng.3 |
|- .<_ = ( le ` R ) |
5 |
|
elin |
|- ( R e. ( Ring i^i oGrp ) <-> ( R e. Ring /\ R e. oGrp ) ) |
6 |
5
|
anbi1i |
|- ( ( R e. ( Ring i^i oGrp ) /\ A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) <-> ( ( R e. Ring /\ R e. oGrp ) /\ A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) ) |
7 |
|
fvexd |
|- ( r = R -> ( .r ` r ) e. _V ) |
8 |
|
simpr |
|- ( ( r = R /\ t = ( .r ` r ) ) -> t = ( .r ` r ) ) |
9 |
|
simpl |
|- ( ( r = R /\ t = ( .r ` r ) ) -> r = R ) |
10 |
9
|
fveq2d |
|- ( ( r = R /\ t = ( .r ` r ) ) -> ( .r ` r ) = ( .r ` R ) ) |
11 |
10 3
|
eqtr4di |
|- ( ( r = R /\ t = ( .r ` r ) ) -> ( .r ` r ) = .x. ) |
12 |
8 11
|
eqtrd |
|- ( ( r = R /\ t = ( .r ` r ) ) -> t = .x. ) |
13 |
12
|
oveqd |
|- ( ( r = R /\ t = ( .r ` r ) ) -> ( a t b ) = ( a .x. b ) ) |
14 |
13
|
breq2d |
|- ( ( r = R /\ t = ( .r ` r ) ) -> ( .0. l ( a t b ) <-> .0. l ( a .x. b ) ) ) |
15 |
14
|
imbi2d |
|- ( ( r = R /\ t = ( .r ` r ) ) -> ( ( ( .0. l a /\ .0. l b ) -> .0. l ( a t b ) ) <-> ( ( .0. l a /\ .0. l b ) -> .0. l ( a .x. b ) ) ) ) |
16 |
15
|
2ralbidv |
|- ( ( r = R /\ t = ( .r ` r ) ) -> ( A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a t b ) ) <-> A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a .x. b ) ) ) ) |
17 |
16
|
sbcbidv |
|- ( ( r = R /\ t = ( .r ` r ) ) -> ( [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a t b ) ) <-> [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a .x. b ) ) ) ) |
18 |
7 17
|
sbcied |
|- ( r = R -> ( [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a t b ) ) <-> [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a .x. b ) ) ) ) |
19 |
|
fvexd |
|- ( r = R -> ( Base ` r ) e. _V ) |
20 |
|
simpr |
|- ( ( r = R /\ v = ( Base ` r ) ) -> v = ( Base ` r ) ) |
21 |
|
fveq2 |
|- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
22 |
21 1
|
eqtr4di |
|- ( r = R -> ( Base ` r ) = B ) |
23 |
22
|
adantr |
|- ( ( r = R /\ v = ( Base ` r ) ) -> ( Base ` r ) = B ) |
24 |
20 23
|
eqtrd |
|- ( ( r = R /\ v = ( Base ` r ) ) -> v = B ) |
25 |
|
raleq |
|- ( v = B -> ( A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) ) ) |
26 |
25
|
raleqbi1dv |
|- ( v = B -> ( A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> A. a e. B A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) ) ) |
27 |
24 26
|
syl |
|- ( ( r = R /\ v = ( Base ` r ) ) -> ( A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> A. a e. B A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) ) ) |
28 |
27
|
sbcbidv |
|- ( ( r = R /\ v = ( Base ` r ) ) -> ( [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) ) ) |
29 |
28
|
sbcbidv |
|- ( ( r = R /\ v = ( Base ` r ) ) -> ( [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) ) ) |
30 |
29
|
sbcbidv |
|- ( ( r = R /\ v = ( Base ` r ) ) -> ( [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) ) ) |
31 |
19 30
|
sbcied |
|- ( r = R -> ( [. ( Base ` r ) / v ]. [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) ) ) |
32 |
|
fvexd |
|- ( r = R -> ( 0g ` r ) e. _V ) |
33 |
|
simpr |
|- ( ( r = R /\ z = ( 0g ` r ) ) -> z = ( 0g ` r ) ) |
34 |
|
fveq2 |
|- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
35 |
34 2
|
eqtr4di |
|- ( r = R -> ( 0g ` r ) = .0. ) |
36 |
35
|
adantr |
|- ( ( r = R /\ z = ( 0g ` r ) ) -> ( 0g ` r ) = .0. ) |
37 |
33 36
|
eqtrd |
|- ( ( r = R /\ z = ( 0g ` r ) ) -> z = .0. ) |
38 |
37
|
breq1d |
|- ( ( r = R /\ z = ( 0g ` r ) ) -> ( z l a <-> .0. l a ) ) |
39 |
37
|
breq1d |
|- ( ( r = R /\ z = ( 0g ` r ) ) -> ( z l b <-> .0. l b ) ) |
40 |
38 39
|
anbi12d |
|- ( ( r = R /\ z = ( 0g ` r ) ) -> ( ( z l a /\ z l b ) <-> ( .0. l a /\ .0. l b ) ) ) |
41 |
37
|
breq1d |
|- ( ( r = R /\ z = ( 0g ` r ) ) -> ( z l ( a t b ) <-> .0. l ( a t b ) ) ) |
42 |
40 41
|
imbi12d |
|- ( ( r = R /\ z = ( 0g ` r ) ) -> ( ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> ( ( .0. l a /\ .0. l b ) -> .0. l ( a t b ) ) ) ) |
43 |
42
|
2ralbidv |
|- ( ( r = R /\ z = ( 0g ` r ) ) -> ( A. a e. B A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a t b ) ) ) ) |
44 |
43
|
sbcbidv |
|- ( ( r = R /\ z = ( 0g ` r ) ) -> ( [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a t b ) ) ) ) |
45 |
44
|
sbcbidv |
|- ( ( r = R /\ z = ( 0g ` r ) ) -> ( [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a t b ) ) ) ) |
46 |
32 45
|
sbcied |
|- ( r = R -> ( [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a t b ) ) ) ) |
47 |
31 46
|
bitr2d |
|- ( r = R -> ( [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a t b ) ) <-> [. ( Base ` r ) / v ]. [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) ) ) |
48 |
|
fvexd |
|- ( r = R -> ( le ` r ) e. _V ) |
49 |
|
simpr |
|- ( ( r = R /\ l = ( le ` r ) ) -> l = ( le ` r ) ) |
50 |
|
simpl |
|- ( ( r = R /\ l = ( le ` r ) ) -> r = R ) |
51 |
50
|
fveq2d |
|- ( ( r = R /\ l = ( le ` r ) ) -> ( le ` r ) = ( le ` R ) ) |
52 |
51 4
|
eqtr4di |
|- ( ( r = R /\ l = ( le ` r ) ) -> ( le ` r ) = .<_ ) |
53 |
49 52
|
eqtrd |
|- ( ( r = R /\ l = ( le ` r ) ) -> l = .<_ ) |
54 |
53
|
breqd |
|- ( ( r = R /\ l = ( le ` r ) ) -> ( .0. l a <-> .0. .<_ a ) ) |
55 |
53
|
breqd |
|- ( ( r = R /\ l = ( le ` r ) ) -> ( .0. l b <-> .0. .<_ b ) ) |
56 |
54 55
|
anbi12d |
|- ( ( r = R /\ l = ( le ` r ) ) -> ( ( .0. l a /\ .0. l b ) <-> ( .0. .<_ a /\ .0. .<_ b ) ) ) |
57 |
53
|
breqd |
|- ( ( r = R /\ l = ( le ` r ) ) -> ( .0. l ( a .x. b ) <-> .0. .<_ ( a .x. b ) ) ) |
58 |
56 57
|
imbi12d |
|- ( ( r = R /\ l = ( le ` r ) ) -> ( ( ( .0. l a /\ .0. l b ) -> .0. l ( a .x. b ) ) <-> ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) ) |
59 |
58
|
2ralbidv |
|- ( ( r = R /\ l = ( le ` r ) ) -> ( A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a .x. b ) ) <-> A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) ) |
60 |
48 59
|
sbcied |
|- ( r = R -> ( [. ( le ` r ) / l ]. A. a e. B A. b e. B ( ( .0. l a /\ .0. l b ) -> .0. l ( a .x. b ) ) <-> A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) ) |
61 |
18 47 60
|
3bitr3d |
|- ( r = R -> ( [. ( Base ` r ) / v ]. [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) <-> A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) ) |
62 |
|
df-orng |
|- oRing = { r e. ( Ring i^i oGrp ) | [. ( Base ` r ) / v ]. [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) } |
63 |
61 62
|
elrab2 |
|- ( R e. oRing <-> ( R e. ( Ring i^i oGrp ) /\ A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) ) |
64 |
|
df-3an |
|- ( ( R e. Ring /\ R e. oGrp /\ A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) <-> ( ( R e. Ring /\ R e. oGrp ) /\ A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) ) |
65 |
6 63 64
|
3bitr4i |
|- ( R e. oRing <-> ( R e. Ring /\ R e. oGrp /\ A. a e. B A. b e. B ( ( .0. .<_ a /\ .0. .<_ b ) -> .0. .<_ ( a .x. b ) ) ) ) |