Step |
Hyp |
Ref |
Expression |
0 |
|
corng |
|- oRing |
1 |
|
vr |
|- r |
2 |
|
crg |
|- Ring |
3 |
|
cogrp |
|- oGrp |
4 |
2 3
|
cin |
|- ( Ring i^i oGrp ) |
5 |
|
cbs |
|- Base |
6 |
1
|
cv |
|- r |
7 |
6 5
|
cfv |
|- ( Base ` r ) |
8 |
|
vv |
|- v |
9 |
|
c0g |
|- 0g |
10 |
6 9
|
cfv |
|- ( 0g ` r ) |
11 |
|
vz |
|- z |
12 |
|
cmulr |
|- .r |
13 |
6 12
|
cfv |
|- ( .r ` r ) |
14 |
|
vt |
|- t |
15 |
|
cple |
|- le |
16 |
6 15
|
cfv |
|- ( le ` r ) |
17 |
|
vl |
|- l |
18 |
|
va |
|- a |
19 |
8
|
cv |
|- v |
20 |
|
vb |
|- b |
21 |
11
|
cv |
|- z |
22 |
17
|
cv |
|- l |
23 |
18
|
cv |
|- a |
24 |
21 23 22
|
wbr |
|- z l a |
25 |
20
|
cv |
|- b |
26 |
21 25 22
|
wbr |
|- z l b |
27 |
24 26
|
wa |
|- ( z l a /\ z l b ) |
28 |
14
|
cv |
|- t |
29 |
23 25 28
|
co |
|- ( a t b ) |
30 |
21 29 22
|
wbr |
|- z l ( a t b ) |
31 |
27 30
|
wi |
|- ( ( z l a /\ z l b ) -> z l ( a t b ) ) |
32 |
31 20 19
|
wral |
|- A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) |
33 |
32 18 19
|
wral |
|- A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) |
34 |
33 17 16
|
wsbc |
|- [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) |
35 |
34 14 13
|
wsbc |
|- [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) |
36 |
35 11 10
|
wsbc |
|- [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) |
37 |
36 8 7
|
wsbc |
|- [. ( Base ` r ) / v ]. [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) |
38 |
37 1 4
|
crab |
|- { r e. ( Ring i^i oGrp ) | [. ( Base ` r ) / v ]. [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) } |
39 |
0 38
|
wceq |
|- oRing = { r e. ( Ring i^i oGrp ) | [. ( Base ` r ) / v ]. [. ( 0g ` r ) / z ]. [. ( .r ` r ) / t ]. [. ( le ` r ) / l ]. A. a e. v A. b e. v ( ( z l a /\ z l b ) -> z l ( a t b ) ) } |