Metamath Proof Explorer


Definition df-orng

Description: Define class of all ordered rings. An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018)

Ref Expression
Assertion df-orng oRing=rRingoGrp|[˙Baser/v]˙[˙0r/z]˙[˙r/t]˙[˙r/l]˙avbvzlazlbzlatb

Detailed syntax breakdown

Step Hyp Ref Expression
0 corng classoRing
1 vr setvarr
2 crg classRing
3 cogrp classoGrp
4 2 3 cin classRingoGrp
5 cbs classBase
6 1 cv setvarr
7 6 5 cfv classBaser
8 vv setvarv
9 c0g class0𝑔
10 6 9 cfv class0r
11 vz setvarz
12 cmulr class𝑟
13 6 12 cfv classr
14 vt setvart
15 cple classle
16 6 15 cfv classr
17 vl setvarl
18 va setvara
19 8 cv setvarv
20 vb setvarb
21 11 cv setvarz
22 17 cv setvarl
23 18 cv setvara
24 21 23 22 wbr wffzla
25 20 cv setvarb
26 21 25 22 wbr wffzlb
27 24 26 wa wffzlazlb
28 14 cv setvart
29 23 25 28 co classatb
30 21 29 22 wbr wffzlatb
31 27 30 wi wffzlazlbzlatb
32 31 20 19 wral wffbvzlazlbzlatb
33 32 18 19 wral wffavbvzlazlbzlatb
34 33 17 16 wsbc wff[˙r/l]˙avbvzlazlbzlatb
35 34 14 13 wsbc wff[˙r/t]˙[˙r/l]˙avbvzlazlbzlatb
36 35 11 10 wsbc wff[˙0r/z]˙[˙r/t]˙[˙r/l]˙avbvzlazlbzlatb
37 36 8 7 wsbc wff[˙Baser/v]˙[˙0r/z]˙[˙r/t]˙[˙r/l]˙avbvzlazlbzlatb
38 37 1 4 crab classrRingoGrp|[˙Baser/v]˙[˙0r/z]˙[˙r/t]˙[˙r/l]˙avbvzlazlbzlatb
39 0 38 wceq wffoRing=rRingoGrp|[˙Baser/v]˙[˙0r/z]˙[˙r/t]˙[˙r/l]˙avbvzlazlbzlatb