Step |
Hyp |
Ref |
Expression |
0 |
|
corng |
⊢ oRing |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
crg |
⊢ Ring |
3 |
|
cogrp |
⊢ oGrp |
4 |
2 3
|
cin |
⊢ ( Ring ∩ oGrp ) |
5 |
|
cbs |
⊢ Base |
6 |
1
|
cv |
⊢ 𝑟 |
7 |
6 5
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
8 |
|
vv |
⊢ 𝑣 |
9 |
|
c0g |
⊢ 0g |
10 |
6 9
|
cfv |
⊢ ( 0g ‘ 𝑟 ) |
11 |
|
vz |
⊢ 𝑧 |
12 |
|
cmulr |
⊢ .r |
13 |
6 12
|
cfv |
⊢ ( .r ‘ 𝑟 ) |
14 |
|
vt |
⊢ 𝑡 |
15 |
|
cple |
⊢ le |
16 |
6 15
|
cfv |
⊢ ( le ‘ 𝑟 ) |
17 |
|
vl |
⊢ 𝑙 |
18 |
|
va |
⊢ 𝑎 |
19 |
8
|
cv |
⊢ 𝑣 |
20 |
|
vb |
⊢ 𝑏 |
21 |
11
|
cv |
⊢ 𝑧 |
22 |
17
|
cv |
⊢ 𝑙 |
23 |
18
|
cv |
⊢ 𝑎 |
24 |
21 23 22
|
wbr |
⊢ 𝑧 𝑙 𝑎 |
25 |
20
|
cv |
⊢ 𝑏 |
26 |
21 25 22
|
wbr |
⊢ 𝑧 𝑙 𝑏 |
27 |
24 26
|
wa |
⊢ ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) |
28 |
14
|
cv |
⊢ 𝑡 |
29 |
23 25 28
|
co |
⊢ ( 𝑎 𝑡 𝑏 ) |
30 |
21 29 22
|
wbr |
⊢ 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) |
31 |
27 30
|
wi |
⊢ ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) |
32 |
31 20 19
|
wral |
⊢ ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) |
33 |
32 18 19
|
wral |
⊢ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) |
34 |
33 17 16
|
wsbc |
⊢ [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) |
35 |
34 14 13
|
wsbc |
⊢ [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) |
36 |
35 11 10
|
wsbc |
⊢ [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) |
37 |
36 8 7
|
wsbc |
⊢ [ ( Base ‘ 𝑟 ) / 𝑣 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) |
38 |
37 1 4
|
crab |
⊢ { 𝑟 ∈ ( Ring ∩ oGrp ) ∣ [ ( Base ‘ 𝑟 ) / 𝑣 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) } |
39 |
0 38
|
wceq |
⊢ oRing = { 𝑟 ∈ ( Ring ∩ oGrp ) ∣ [ ( Base ‘ 𝑟 ) / 𝑣 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) } |