Metamath Proof Explorer


Definition df-orng

Description: Define class of all ordered rings. An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 23-Mar-2018)

Ref Expression
Assertion df-orng oRing = { 𝑟 ∈ ( Ring ∩ oGrp ) ∣ [ ( Base ‘ 𝑟 ) / 𝑣 ] [ ( 0g𝑟 ) / 𝑧 ] [ ( .r𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ]𝑎𝑣𝑏𝑣 ( ( 𝑧 𝑙 𝑎𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 corng oRing
1 vr 𝑟
2 crg Ring
3 cogrp oGrp
4 2 3 cin ( Ring ∩ oGrp )
5 cbs Base
6 1 cv 𝑟
7 6 5 cfv ( Base ‘ 𝑟 )
8 vv 𝑣
9 c0g 0g
10 6 9 cfv ( 0g𝑟 )
11 vz 𝑧
12 cmulr .r
13 6 12 cfv ( .r𝑟 )
14 vt 𝑡
15 cple le
16 6 15 cfv ( le ‘ 𝑟 )
17 vl 𝑙
18 va 𝑎
19 8 cv 𝑣
20 vb 𝑏
21 11 cv 𝑧
22 17 cv 𝑙
23 18 cv 𝑎
24 21 23 22 wbr 𝑧 𝑙 𝑎
25 20 cv 𝑏
26 21 25 22 wbr 𝑧 𝑙 𝑏
27 24 26 wa ( 𝑧 𝑙 𝑎𝑧 𝑙 𝑏 )
28 14 cv 𝑡
29 23 25 28 co ( 𝑎 𝑡 𝑏 )
30 21 29 22 wbr 𝑧 𝑙 ( 𝑎 𝑡 𝑏 )
31 27 30 wi ( ( 𝑧 𝑙 𝑎𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) )
32 31 20 19 wral 𝑏𝑣 ( ( 𝑧 𝑙 𝑎𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) )
33 32 18 19 wral 𝑎𝑣𝑏𝑣 ( ( 𝑧 𝑙 𝑎𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) )
34 33 17 16 wsbc [ ( le ‘ 𝑟 ) / 𝑙 ]𝑎𝑣𝑏𝑣 ( ( 𝑧 𝑙 𝑎𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) )
35 34 14 13 wsbc [ ( .r𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ]𝑎𝑣𝑏𝑣 ( ( 𝑧 𝑙 𝑎𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) )
36 35 11 10 wsbc [ ( 0g𝑟 ) / 𝑧 ] [ ( .r𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ]𝑎𝑣𝑏𝑣 ( ( 𝑧 𝑙 𝑎𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) )
37 36 8 7 wsbc [ ( Base ‘ 𝑟 ) / 𝑣 ] [ ( 0g𝑟 ) / 𝑧 ] [ ( .r𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ]𝑎𝑣𝑏𝑣 ( ( 𝑧 𝑙 𝑎𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) )
38 37 1 4 crab { 𝑟 ∈ ( Ring ∩ oGrp ) ∣ [ ( Base ‘ 𝑟 ) / 𝑣 ] [ ( 0g𝑟 ) / 𝑧 ] [ ( .r𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ]𝑎𝑣𝑏𝑣 ( ( 𝑧 𝑙 𝑎𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) }
39 0 38 wceq oRing = { 𝑟 ∈ ( Ring ∩ oGrp ) ∣ [ ( Base ‘ 𝑟 ) / 𝑣 ] [ ( 0g𝑟 ) / 𝑧 ] [ ( .r𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ]𝑎𝑣𝑏𝑣 ( ( 𝑧 𝑙 𝑎𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) }