| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isorng.0 |
|
| 2 |
|
isorng.1 |
|
| 3 |
|
isorng.2 |
|
| 4 |
|
isorng.3 |
|
| 5 |
|
elin |
|
| 6 |
5
|
anbi1i |
|
| 7 |
|
fvexd |
|
| 8 |
|
simpr |
|
| 9 |
|
simpl |
|
| 10 |
9
|
fveq2d |
|
| 11 |
10 3
|
eqtr4di |
|
| 12 |
8 11
|
eqtrd |
|
| 13 |
12
|
oveqd |
|
| 14 |
13
|
breq2d |
|
| 15 |
14
|
imbi2d |
|
| 16 |
15
|
2ralbidv |
|
| 17 |
16
|
sbcbidv |
|
| 18 |
7 17
|
sbcied |
|
| 19 |
|
fvexd |
|
| 20 |
|
simpr |
|
| 21 |
|
fveq2 |
|
| 22 |
21 1
|
eqtr4di |
|
| 23 |
22
|
adantr |
|
| 24 |
20 23
|
eqtrd |
|
| 25 |
|
raleq |
|
| 26 |
25
|
raleqbi1dv |
|
| 27 |
24 26
|
syl |
|
| 28 |
27
|
sbcbidv |
|
| 29 |
28
|
sbcbidv |
|
| 30 |
29
|
sbcbidv |
|
| 31 |
19 30
|
sbcied |
|
| 32 |
|
fvexd |
|
| 33 |
|
simpr |
|
| 34 |
|
fveq2 |
|
| 35 |
34 2
|
eqtr4di |
|
| 36 |
35
|
adantr |
|
| 37 |
33 36
|
eqtrd |
|
| 38 |
37
|
breq1d |
|
| 39 |
37
|
breq1d |
|
| 40 |
38 39
|
anbi12d |
|
| 41 |
37
|
breq1d |
|
| 42 |
40 41
|
imbi12d |
|
| 43 |
42
|
2ralbidv |
|
| 44 |
43
|
sbcbidv |
|
| 45 |
44
|
sbcbidv |
|
| 46 |
32 45
|
sbcied |
|
| 47 |
31 46
|
bitr2d |
|
| 48 |
|
fvexd |
|
| 49 |
|
simpr |
|
| 50 |
|
simpl |
|
| 51 |
50
|
fveq2d |
|
| 52 |
51 4
|
eqtr4di |
|
| 53 |
49 52
|
eqtrd |
|
| 54 |
53
|
breqd |
|
| 55 |
53
|
breqd |
|
| 56 |
54 55
|
anbi12d |
|
| 57 |
53
|
breqd |
|
| 58 |
56 57
|
imbi12d |
|
| 59 |
58
|
2ralbidv |
|
| 60 |
48 59
|
sbcied |
|
| 61 |
18 47 60
|
3bitr3d |
|
| 62 |
|
df-orng |
|
| 63 |
61 62
|
elrab2 |
|
| 64 |
|
df-3an |
|
| 65 |
6 63 64
|
3bitr4i |
|