Step |
Hyp |
Ref |
Expression |
1 |
|
isorng.0 |
|
2 |
|
isorng.1 |
|
3 |
|
isorng.2 |
|
4 |
|
isorng.3 |
|
5 |
|
elin |
|
6 |
5
|
anbi1i |
|
7 |
|
fvexd |
|
8 |
|
simpr |
|
9 |
|
simpl |
|
10 |
9
|
fveq2d |
|
11 |
10 3
|
eqtr4di |
|
12 |
8 11
|
eqtrd |
|
13 |
12
|
oveqd |
|
14 |
13
|
breq2d |
|
15 |
14
|
imbi2d |
|
16 |
15
|
2ralbidv |
|
17 |
16
|
sbcbidv |
|
18 |
7 17
|
sbcied |
|
19 |
|
fvexd |
|
20 |
|
simpr |
|
21 |
|
fveq2 |
|
22 |
21 1
|
eqtr4di |
|
23 |
22
|
adantr |
|
24 |
20 23
|
eqtrd |
|
25 |
|
raleq |
|
26 |
25
|
raleqbi1dv |
|
27 |
24 26
|
syl |
|
28 |
27
|
sbcbidv |
|
29 |
28
|
sbcbidv |
|
30 |
29
|
sbcbidv |
|
31 |
19 30
|
sbcied |
|
32 |
|
fvexd |
|
33 |
|
simpr |
|
34 |
|
fveq2 |
|
35 |
34 2
|
eqtr4di |
|
36 |
35
|
adantr |
|
37 |
33 36
|
eqtrd |
|
38 |
37
|
breq1d |
|
39 |
37
|
breq1d |
|
40 |
38 39
|
anbi12d |
|
41 |
37
|
breq1d |
|
42 |
40 41
|
imbi12d |
|
43 |
42
|
2ralbidv |
|
44 |
43
|
sbcbidv |
|
45 |
44
|
sbcbidv |
|
46 |
32 45
|
sbcied |
|
47 |
31 46
|
bitr2d |
|
48 |
|
fvexd |
|
49 |
|
simpr |
|
50 |
|
simpl |
|
51 |
50
|
fveq2d |
|
52 |
51 4
|
eqtr4di |
|
53 |
49 52
|
eqtrd |
|
54 |
53
|
breqd |
|
55 |
53
|
breqd |
|
56 |
54 55
|
anbi12d |
|
57 |
53
|
breqd |
|
58 |
56 57
|
imbi12d |
|
59 |
58
|
2ralbidv |
|
60 |
48 59
|
sbcied |
|
61 |
18 47 60
|
3bitr3d |
|
62 |
|
df-orng |
|
63 |
61 62
|
elrab2 |
|
64 |
|
df-3an |
|
65 |
6 63 64
|
3bitr4i |
|