Description: An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 18-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isorng.0 | |
|
isorng.1 | |
||
isorng.2 | |
||
isorng.3 | |
||
Assertion | isorng | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isorng.0 | |
|
2 | isorng.1 | |
|
3 | isorng.2 | |
|
4 | isorng.3 | |
|
5 | elin | |
|
6 | 5 | anbi1i | |
7 | fvexd | |
|
8 | simpr | |
|
9 | simpl | |
|
10 | 9 | fveq2d | |
11 | 10 3 | eqtr4di | |
12 | 8 11 | eqtrd | |
13 | 12 | oveqd | |
14 | 13 | breq2d | |
15 | 14 | imbi2d | |
16 | 15 | 2ralbidv | |
17 | 16 | sbcbidv | |
18 | 7 17 | sbcied | |
19 | fvexd | |
|
20 | simpr | |
|
21 | fveq2 | |
|
22 | 21 1 | eqtr4di | |
23 | 22 | adantr | |
24 | 20 23 | eqtrd | |
25 | raleq | |
|
26 | 25 | raleqbi1dv | |
27 | 24 26 | syl | |
28 | 27 | sbcbidv | |
29 | 28 | sbcbidv | |
30 | 29 | sbcbidv | |
31 | 19 30 | sbcied | |
32 | fvexd | |
|
33 | simpr | |
|
34 | fveq2 | |
|
35 | 34 2 | eqtr4di | |
36 | 35 | adantr | |
37 | 33 36 | eqtrd | |
38 | 37 | breq1d | |
39 | 37 | breq1d | |
40 | 38 39 | anbi12d | |
41 | 37 | breq1d | |
42 | 40 41 | imbi12d | |
43 | 42 | 2ralbidv | |
44 | 43 | sbcbidv | |
45 | 44 | sbcbidv | |
46 | 32 45 | sbcied | |
47 | 31 46 | bitr2d | |
48 | fvexd | |
|
49 | simpr | |
|
50 | simpl | |
|
51 | 50 | fveq2d | |
52 | 51 4 | eqtr4di | |
53 | 49 52 | eqtrd | |
54 | 53 | breqd | |
55 | 53 | breqd | |
56 | 54 55 | anbi12d | |
57 | 53 | breqd | |
58 | 56 57 | imbi12d | |
59 | 58 | 2ralbidv | |
60 | 48 59 | sbcied | |
61 | 18 47 60 | 3bitr3d | |
62 | df-orng | |
|
63 | 61 62 | elrab2 | |
64 | df-3an | |
|
65 | 6 63 64 | 3bitr4i | |