Metamath Proof Explorer


Theorem isorng

Description: An ordered ring is a ring with a total ordering compatible with its operations. (Contributed by Thierry Arnoux, 18-Jan-2018)

Ref Expression
Hypotheses isorng.0 B=BaseR
isorng.1 0˙=0R
isorng.2 ·˙=R
isorng.3 ˙=R
Assertion isorng RoRingRRingRoGrpaBbB0˙˙a0˙˙b0˙˙a·˙b

Proof

Step Hyp Ref Expression
1 isorng.0 B=BaseR
2 isorng.1 0˙=0R
3 isorng.2 ·˙=R
4 isorng.3 ˙=R
5 elin RRingoGrpRRingRoGrp
6 5 anbi1i RRingoGrpaBbB0˙˙a0˙˙b0˙˙a·˙bRRingRoGrpaBbB0˙˙a0˙˙b0˙˙a·˙b
7 fvexd r=RrV
8 simpr r=Rt=rt=r
9 simpl r=Rt=rr=R
10 9 fveq2d r=Rt=rr=R
11 10 3 eqtr4di r=Rt=rr=·˙
12 8 11 eqtrd r=Rt=rt=·˙
13 12 oveqd r=Rt=ratb=a·˙b
14 13 breq2d r=Rt=r0˙latb0˙la·˙b
15 14 imbi2d r=Rt=r0˙la0˙lb0˙latb0˙la0˙lb0˙la·˙b
16 15 2ralbidv r=Rt=raBbB0˙la0˙lb0˙latbaBbB0˙la0˙lb0˙la·˙b
17 16 sbcbidv r=Rt=r[˙r/l]˙aBbB0˙la0˙lb0˙latb[˙r/l]˙aBbB0˙la0˙lb0˙la·˙b
18 7 17 sbcied r=R[˙r/t]˙[˙r/l]˙aBbB0˙la0˙lb0˙latb[˙r/l]˙aBbB0˙la0˙lb0˙la·˙b
19 fvexd r=RBaserV
20 simpr r=Rv=Baserv=Baser
21 fveq2 r=RBaser=BaseR
22 21 1 eqtr4di r=RBaser=B
23 22 adantr r=Rv=BaserBaser=B
24 20 23 eqtrd r=Rv=Baserv=B
25 raleq v=BbvzlazlbzlatbbBzlazlbzlatb
26 25 raleqbi1dv v=BavbvzlazlbzlatbaBbBzlazlbzlatb
27 24 26 syl r=Rv=BaseravbvzlazlbzlatbaBbBzlazlbzlatb
28 27 sbcbidv r=Rv=Baser[˙r/l]˙avbvzlazlbzlatb[˙r/l]˙aBbBzlazlbzlatb
29 28 sbcbidv r=Rv=Baser[˙r/t]˙[˙r/l]˙avbvzlazlbzlatb[˙r/t]˙[˙r/l]˙aBbBzlazlbzlatb
30 29 sbcbidv r=Rv=Baser[˙0r/z]˙[˙r/t]˙[˙r/l]˙avbvzlazlbzlatb[˙0r/z]˙[˙r/t]˙[˙r/l]˙aBbBzlazlbzlatb
31 19 30 sbcied r=R[˙Baser/v]˙[˙0r/z]˙[˙r/t]˙[˙r/l]˙avbvzlazlbzlatb[˙0r/z]˙[˙r/t]˙[˙r/l]˙aBbBzlazlbzlatb
32 fvexd r=R0rV
33 simpr r=Rz=0rz=0r
34 fveq2 r=R0r=0R
35 34 2 eqtr4di r=R0r=0˙
36 35 adantr r=Rz=0r0r=0˙
37 33 36 eqtrd r=Rz=0rz=0˙
38 37 breq1d r=Rz=0rzla0˙la
39 37 breq1d r=Rz=0rzlb0˙lb
40 38 39 anbi12d r=Rz=0rzlazlb0˙la0˙lb
41 37 breq1d r=Rz=0rzlatb0˙latb
42 40 41 imbi12d r=Rz=0rzlazlbzlatb0˙la0˙lb0˙latb
43 42 2ralbidv r=Rz=0raBbBzlazlbzlatbaBbB0˙la0˙lb0˙latb
44 43 sbcbidv r=Rz=0r[˙r/l]˙aBbBzlazlbzlatb[˙r/l]˙aBbB0˙la0˙lb0˙latb
45 44 sbcbidv r=Rz=0r[˙r/t]˙[˙r/l]˙aBbBzlazlbzlatb[˙r/t]˙[˙r/l]˙aBbB0˙la0˙lb0˙latb
46 32 45 sbcied r=R[˙0r/z]˙[˙r/t]˙[˙r/l]˙aBbBzlazlbzlatb[˙r/t]˙[˙r/l]˙aBbB0˙la0˙lb0˙latb
47 31 46 bitr2d r=R[˙r/t]˙[˙r/l]˙aBbB0˙la0˙lb0˙latb[˙Baser/v]˙[˙0r/z]˙[˙r/t]˙[˙r/l]˙avbvzlazlbzlatb
48 fvexd r=RrV
49 simpr r=Rl=rl=r
50 simpl r=Rl=rr=R
51 50 fveq2d r=Rl=rr=R
52 51 4 eqtr4di r=Rl=rr=˙
53 49 52 eqtrd r=Rl=rl=˙
54 53 breqd r=Rl=r0˙la0˙˙a
55 53 breqd r=Rl=r0˙lb0˙˙b
56 54 55 anbi12d r=Rl=r0˙la0˙lb0˙˙a0˙˙b
57 53 breqd r=Rl=r0˙la·˙b0˙˙a·˙b
58 56 57 imbi12d r=Rl=r0˙la0˙lb0˙la·˙b0˙˙a0˙˙b0˙˙a·˙b
59 58 2ralbidv r=Rl=raBbB0˙la0˙lb0˙la·˙baBbB0˙˙a0˙˙b0˙˙a·˙b
60 48 59 sbcied r=R[˙r/l]˙aBbB0˙la0˙lb0˙la·˙baBbB0˙˙a0˙˙b0˙˙a·˙b
61 18 47 60 3bitr3d r=R[˙Baser/v]˙[˙0r/z]˙[˙r/t]˙[˙r/l]˙avbvzlazlbzlatbaBbB0˙˙a0˙˙b0˙˙a·˙b
62 df-orng oRing=rRingoGrp|[˙Baser/v]˙[˙0r/z]˙[˙r/t]˙[˙r/l]˙avbvzlazlbzlatb
63 61 62 elrab2 RoRingRRingoGrpaBbB0˙˙a0˙˙b0˙˙a·˙b
64 df-3an RRingRoGrpaBbB0˙˙a0˙˙b0˙˙a·˙bRRingRoGrpaBbB0˙˙a0˙˙b0˙˙a·˙b
65 6 63 64 3bitr4i RoRingRRingRoGrpaBbB0˙˙a0˙˙b0˙˙a·˙b