Step |
Hyp |
Ref |
Expression |
1 |
|
isorng.0 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
isorng.1 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
isorng.2 |
⊢ · = ( .r ‘ 𝑅 ) |
4 |
|
isorng.3 |
⊢ ≤ = ( le ‘ 𝑅 ) |
5 |
|
elin |
⊢ ( 𝑅 ∈ ( Ring ∩ oGrp ) ↔ ( 𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ) ) |
6 |
5
|
anbi1i |
⊢ ( ( 𝑅 ∈ ( Ring ∩ oGrp ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ) |
7 |
|
fvexd |
⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) ∈ V ) |
8 |
|
simpr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑡 = ( .r ‘ 𝑟 ) ) → 𝑡 = ( .r ‘ 𝑟 ) ) |
9 |
|
simpl |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑡 = ( .r ‘ 𝑟 ) ) → 𝑟 = 𝑅 ) |
10 |
9
|
fveq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑡 = ( .r ‘ 𝑟 ) ) → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) |
11 |
10 3
|
eqtr4di |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑡 = ( .r ‘ 𝑟 ) ) → ( .r ‘ 𝑟 ) = · ) |
12 |
8 11
|
eqtrd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑡 = ( .r ‘ 𝑟 ) ) → 𝑡 = · ) |
13 |
12
|
oveqd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑡 = ( .r ‘ 𝑟 ) ) → ( 𝑎 𝑡 𝑏 ) = ( 𝑎 · 𝑏 ) ) |
14 |
13
|
breq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑡 = ( .r ‘ 𝑟 ) ) → ( 0 𝑙 ( 𝑎 𝑡 𝑏 ) ↔ 0 𝑙 ( 𝑎 · 𝑏 ) ) ) |
15 |
14
|
imbi2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑡 = ( .r ‘ 𝑟 ) ) → ( ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 · 𝑏 ) ) ) ) |
16 |
15
|
2ralbidv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑡 = ( .r ‘ 𝑟 ) ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 · 𝑏 ) ) ) ) |
17 |
16
|
sbcbidv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑡 = ( .r ‘ 𝑟 ) ) → ( [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 · 𝑏 ) ) ) ) |
18 |
7 17
|
sbcied |
⊢ ( 𝑟 = 𝑅 → ( [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 · 𝑏 ) ) ) ) |
19 |
|
fvexd |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) ∈ V ) |
20 |
|
simpr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑣 = ( Base ‘ 𝑟 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) |
22 |
21 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
23 |
22
|
adantr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( Base ‘ 𝑟 ) = 𝐵 ) |
24 |
20 23
|
eqtrd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → 𝑣 = 𝐵 ) |
25 |
|
raleq |
⊢ ( 𝑣 = 𝐵 → ( ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
26 |
25
|
raleqbi1dv |
⊢ ( 𝑣 = 𝐵 → ( ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
27 |
24 26
|
syl |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
28 |
27
|
sbcbidv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
29 |
28
|
sbcbidv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
30 |
29
|
sbcbidv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑣 = ( Base ‘ 𝑟 ) ) → ( [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
31 |
19 30
|
sbcied |
⊢ ( 𝑟 = 𝑅 → ( [ ( Base ‘ 𝑟 ) / 𝑣 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
32 |
|
fvexd |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) ∈ V ) |
33 |
|
simpr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → 𝑧 = ( 0g ‘ 𝑟 ) ) |
34 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
35 |
34 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = 0 ) |
36 |
35
|
adantr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → ( 0g ‘ 𝑟 ) = 0 ) |
37 |
33 36
|
eqtrd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → 𝑧 = 0 ) |
38 |
37
|
breq1d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → ( 𝑧 𝑙 𝑎 ↔ 0 𝑙 𝑎 ) ) |
39 |
37
|
breq1d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → ( 𝑧 𝑙 𝑏 ↔ 0 𝑙 𝑏 ) ) |
40 |
38 39
|
anbi12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) ↔ ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) ) ) |
41 |
37
|
breq1d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → ( 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ↔ 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) |
42 |
40 41
|
imbi12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → ( ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
43 |
42
|
2ralbidv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
44 |
43
|
sbcbidv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → ( [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
45 |
44
|
sbcbidv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑧 = ( 0g ‘ 𝑟 ) ) → ( [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
46 |
32 45
|
sbcied |
⊢ ( 𝑟 = 𝑅 → ( [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
47 |
31 46
|
bitr2d |
⊢ ( 𝑟 = 𝑅 → ( [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ [ ( Base ‘ 𝑟 ) / 𝑣 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ) ) |
48 |
|
fvexd |
⊢ ( 𝑟 = 𝑅 → ( le ‘ 𝑟 ) ∈ V ) |
49 |
|
simpr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → 𝑙 = ( le ‘ 𝑟 ) ) |
50 |
|
simpl |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → 𝑟 = 𝑅 ) |
51 |
50
|
fveq2d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → ( le ‘ 𝑟 ) = ( le ‘ 𝑅 ) ) |
52 |
51 4
|
eqtr4di |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → ( le ‘ 𝑟 ) = ≤ ) |
53 |
49 52
|
eqtrd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → 𝑙 = ≤ ) |
54 |
53
|
breqd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → ( 0 𝑙 𝑎 ↔ 0 ≤ 𝑎 ) ) |
55 |
53
|
breqd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → ( 0 𝑙 𝑏 ↔ 0 ≤ 𝑏 ) ) |
56 |
54 55
|
anbi12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) ↔ ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) ) ) |
57 |
53
|
breqd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → ( 0 𝑙 ( 𝑎 · 𝑏 ) ↔ 0 ≤ ( 𝑎 · 𝑏 ) ) ) |
58 |
56 57
|
imbi12d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → ( ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 · 𝑏 ) ) ↔ ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ) |
59 |
58
|
2ralbidv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑙 = ( le ‘ 𝑟 ) ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 · 𝑏 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ) |
60 |
48 59
|
sbcied |
⊢ ( 𝑟 = 𝑅 → ( [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 𝑙 𝑎 ∧ 0 𝑙 𝑏 ) → 0 𝑙 ( 𝑎 · 𝑏 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ) |
61 |
18 47 60
|
3bitr3d |
⊢ ( 𝑟 = 𝑅 → ( [ ( Base ‘ 𝑟 ) / 𝑣 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ) |
62 |
|
df-orng |
⊢ oRing = { 𝑟 ∈ ( Ring ∩ oGrp ) ∣ [ ( Base ‘ 𝑟 ) / 𝑣 ] [ ( 0g ‘ 𝑟 ) / 𝑧 ] [ ( .r ‘ 𝑟 ) / 𝑡 ] [ ( le ‘ 𝑟 ) / 𝑙 ] ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ( ( 𝑧 𝑙 𝑎 ∧ 𝑧 𝑙 𝑏 ) → 𝑧 𝑙 ( 𝑎 𝑡 𝑏 ) ) } |
63 |
61 62
|
elrab2 |
⊢ ( 𝑅 ∈ oRing ↔ ( 𝑅 ∈ ( Ring ∩ oGrp ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ) |
64 |
|
df-3an |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ↔ ( ( 𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ) |
65 |
6 63 64
|
3bitr4i |
⊢ ( 𝑅 ∈ oRing ↔ ( 𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ) |