Description: An ordered ring is a ring. (Contributed by Thierry Arnoux, 23-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | orngring | ⊢ ( 𝑅 ∈ oRing → 𝑅 ∈ Ring ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
2 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
3 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
4 | eqid | ⊢ ( le ‘ 𝑅 ) = ( le ‘ 𝑅 ) | |
5 | 1 2 3 4 | isorng | ⊢ ( 𝑅 ∈ oRing ↔ ( 𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑅 ) ∀ 𝑏 ∈ ( Base ‘ 𝑅 ) ( ( ( 0g ‘ 𝑅 ) ( le ‘ 𝑅 ) 𝑎 ∧ ( 0g ‘ 𝑅 ) ( le ‘ 𝑅 ) 𝑏 ) → ( 0g ‘ 𝑅 ) ( le ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) ) ) |
6 | 5 | simp1bi | ⊢ ( 𝑅 ∈ oRing → 𝑅 ∈ Ring ) |