Description: An ordered ring is a ring. (Contributed by Thierry Arnoux, 23-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | orngring | ⊢ ( 𝑅 ∈ oRing → 𝑅 ∈ Ring ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( le ‘ 𝑅 ) = ( le ‘ 𝑅 ) | |
| 5 | 1 2 3 4 | isorng | ⊢ ( 𝑅 ∈ oRing ↔ ( 𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑅 ) ∀ 𝑏 ∈ ( Base ‘ 𝑅 ) ( ( ( 0g ‘ 𝑅 ) ( le ‘ 𝑅 ) 𝑎 ∧ ( 0g ‘ 𝑅 ) ( le ‘ 𝑅 ) 𝑏 ) → ( 0g ‘ 𝑅 ) ( le ‘ 𝑅 ) ( 𝑎 ( .r ‘ 𝑅 ) 𝑏 ) ) ) ) |
| 6 | 5 | simp1bi | ⊢ ( 𝑅 ∈ oRing → 𝑅 ∈ Ring ) |