Metamath Proof Explorer


Theorem orngogrp

Description: An ordered ring is an ordered group. (Contributed by Thierry Arnoux, 23-Mar-2018)

Ref Expression
Assertion orngogrp ( 𝑅 ∈ oRing → 𝑅 ∈ oGrp )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
2 eqid ( 0g𝑅 ) = ( 0g𝑅 )
3 eqid ( .r𝑅 ) = ( .r𝑅 )
4 eqid ( le ‘ 𝑅 ) = ( le ‘ 𝑅 )
5 1 2 3 4 isorng ( 𝑅 ∈ oRing ↔ ( 𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑅 ) ∀ 𝑏 ∈ ( Base ‘ 𝑅 ) ( ( ( 0g𝑅 ) ( le ‘ 𝑅 ) 𝑎 ∧ ( 0g𝑅 ) ( le ‘ 𝑅 ) 𝑏 ) → ( 0g𝑅 ) ( le ‘ 𝑅 ) ( 𝑎 ( .r𝑅 ) 𝑏 ) ) ) )
6 5 simp2bi ( 𝑅 ∈ oRing → 𝑅 ∈ oGrp )