Metamath Proof Explorer


Theorem orngogrp

Description: An ordered ring is an ordered group. (Contributed by Thierry Arnoux, 23-Mar-2018)

Ref Expression
Assertion orngogrp
|- ( R e. oRing -> R e. oGrp )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( Base ` R ) = ( Base ` R )
2 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
3 eqid
 |-  ( .r ` R ) = ( .r ` R )
4 eqid
 |-  ( le ` R ) = ( le ` R )
5 1 2 3 4 isorng
 |-  ( R e. oRing <-> ( R e. Ring /\ R e. oGrp /\ A. a e. ( Base ` R ) A. b e. ( Base ` R ) ( ( ( 0g ` R ) ( le ` R ) a /\ ( 0g ` R ) ( le ` R ) b ) -> ( 0g ` R ) ( le ` R ) ( a ( .r ` R ) b ) ) ) )
6 5 simp2bi
 |-  ( R e. oRing -> R e. oGrp )