Description: An ordered ring is an ordered group. (Contributed by Thierry Arnoux, 23-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | orngogrp | |- ( R e. oRing -> R e. oGrp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
2 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
3 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
4 | eqid | |- ( le ` R ) = ( le ` R ) |
|
5 | 1 2 3 4 | isorng | |- ( R e. oRing <-> ( R e. Ring /\ R e. oGrp /\ A. a e. ( Base ` R ) A. b e. ( Base ` R ) ( ( ( 0g ` R ) ( le ` R ) a /\ ( 0g ` R ) ( le ` R ) b ) -> ( 0g ` R ) ( le ` R ) ( a ( .r ` R ) b ) ) ) ) |
6 | 5 | simp2bi | |- ( R e. oRing -> R e. oGrp ) |