Step |
Hyp |
Ref |
Expression |
1 |
|
orngmul.0 |
|- B = ( Base ` R ) |
2 |
|
orngmul.1 |
|- .<_ = ( le ` R ) |
3 |
|
orngmul.2 |
|- .0. = ( 0g ` R ) |
4 |
|
orngmul.3 |
|- .x. = ( .r ` R ) |
5 |
|
simpll |
|- ( ( ( R e. oRing /\ X e. B ) /\ .0. .<_ X ) -> R e. oRing ) |
6 |
|
simplr |
|- ( ( ( R e. oRing /\ X e. B ) /\ .0. .<_ X ) -> X e. B ) |
7 |
|
simpr |
|- ( ( ( R e. oRing /\ X e. B ) /\ .0. .<_ X ) -> .0. .<_ X ) |
8 |
1 2 3 4
|
orngmul |
|- ( ( R e. oRing /\ ( X e. B /\ .0. .<_ X ) /\ ( X e. B /\ .0. .<_ X ) ) -> .0. .<_ ( X .x. X ) ) |
9 |
5 6 7 6 7 8
|
syl122anc |
|- ( ( ( R e. oRing /\ X e. B ) /\ .0. .<_ X ) -> .0. .<_ ( X .x. X ) ) |
10 |
|
simpll |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> R e. oRing ) |
11 |
|
orngring |
|- ( R e. oRing -> R e. Ring ) |
12 |
11
|
ad2antrr |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> R e. Ring ) |
13 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
14 |
12 13
|
syl |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> R e. Grp ) |
15 |
|
simplr |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> X e. B ) |
16 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
17 |
1 16
|
grpinvcl |
|- ( ( R e. Grp /\ X e. B ) -> ( ( invg ` R ) ` X ) e. B ) |
18 |
14 15 17
|
syl2anc |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( ( invg ` R ) ` X ) e. B ) |
19 |
|
orngogrp |
|- ( R e. oRing -> R e. oGrp ) |
20 |
|
isogrp |
|- ( R e. oGrp <-> ( R e. Grp /\ R e. oMnd ) ) |
21 |
20
|
simprbi |
|- ( R e. oGrp -> R e. oMnd ) |
22 |
19 21
|
syl |
|- ( R e. oRing -> R e. oMnd ) |
23 |
10 22
|
syl |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> R e. oMnd ) |
24 |
1 3
|
grpidcl |
|- ( R e. Grp -> .0. e. B ) |
25 |
14 24
|
syl |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> .0. e. B ) |
26 |
|
simpl |
|- ( ( R e. oRing /\ X e. B ) -> R e. oRing ) |
27 |
11 13 24
|
3syl |
|- ( R e. oRing -> .0. e. B ) |
28 |
26 27
|
syl |
|- ( ( R e. oRing /\ X e. B ) -> .0. e. B ) |
29 |
|
simpr |
|- ( ( R e. oRing /\ X e. B ) -> X e. B ) |
30 |
26 28 29
|
3jca |
|- ( ( R e. oRing /\ X e. B ) -> ( R e. oRing /\ .0. e. B /\ X e. B ) ) |
31 |
|
eqid |
|- ( lt ` R ) = ( lt ` R ) |
32 |
2 31
|
pltle |
|- ( ( R e. oRing /\ .0. e. B /\ X e. B ) -> ( .0. ( lt ` R ) X -> .0. .<_ X ) ) |
33 |
32
|
con3dimp |
|- ( ( ( R e. oRing /\ .0. e. B /\ X e. B ) /\ -. .0. .<_ X ) -> -. .0. ( lt ` R ) X ) |
34 |
30 33
|
sylan |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> -. .0. ( lt ` R ) X ) |
35 |
|
omndtos |
|- ( R e. oMnd -> R e. Toset ) |
36 |
22 35
|
syl |
|- ( R e. oRing -> R e. Toset ) |
37 |
1 2 31
|
tosso |
|- ( R e. Toset -> ( R e. Toset <-> ( ( lt ` R ) Or B /\ ( _I |` B ) C_ .<_ ) ) ) |
38 |
37
|
ibi |
|- ( R e. Toset -> ( ( lt ` R ) Or B /\ ( _I |` B ) C_ .<_ ) ) |
39 |
38
|
simpld |
|- ( R e. Toset -> ( lt ` R ) Or B ) |
40 |
10 36 39
|
3syl |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( lt ` R ) Or B ) |
41 |
|
solin |
|- ( ( ( lt ` R ) Or B /\ ( .0. e. B /\ X e. B ) ) -> ( .0. ( lt ` R ) X \/ .0. = X \/ X ( lt ` R ) .0. ) ) |
42 |
40 25 15 41
|
syl12anc |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( .0. ( lt ` R ) X \/ .0. = X \/ X ( lt ` R ) .0. ) ) |
43 |
|
3orass |
|- ( ( .0. ( lt ` R ) X \/ .0. = X \/ X ( lt ` R ) .0. ) <-> ( .0. ( lt ` R ) X \/ ( .0. = X \/ X ( lt ` R ) .0. ) ) ) |
44 |
42 43
|
sylib |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( .0. ( lt ` R ) X \/ ( .0. = X \/ X ( lt ` R ) .0. ) ) ) |
45 |
|
orel1 |
|- ( -. .0. ( lt ` R ) X -> ( ( .0. ( lt ` R ) X \/ ( .0. = X \/ X ( lt ` R ) .0. ) ) -> ( .0. = X \/ X ( lt ` R ) .0. ) ) ) |
46 |
34 44 45
|
sylc |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( .0. = X \/ X ( lt ` R ) .0. ) ) |
47 |
|
orcom |
|- ( ( .0. = X \/ X ( lt ` R ) .0. ) <-> ( X ( lt ` R ) .0. \/ .0. = X ) ) |
48 |
|
eqcom |
|- ( .0. = X <-> X = .0. ) |
49 |
48
|
orbi2i |
|- ( ( X ( lt ` R ) .0. \/ .0. = X ) <-> ( X ( lt ` R ) .0. \/ X = .0. ) ) |
50 |
47 49
|
bitri |
|- ( ( .0. = X \/ X ( lt ` R ) .0. ) <-> ( X ( lt ` R ) .0. \/ X = .0. ) ) |
51 |
46 50
|
sylib |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( X ( lt ` R ) .0. \/ X = .0. ) ) |
52 |
|
tospos |
|- ( R e. Toset -> R e. Poset ) |
53 |
10 36 52
|
3syl |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> R e. Poset ) |
54 |
1 2 31
|
pleval2 |
|- ( ( R e. Poset /\ X e. B /\ .0. e. B ) -> ( X .<_ .0. <-> ( X ( lt ` R ) .0. \/ X = .0. ) ) ) |
55 |
53 15 25 54
|
syl3anc |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( X .<_ .0. <-> ( X ( lt ` R ) .0. \/ X = .0. ) ) ) |
56 |
51 55
|
mpbird |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> X .<_ .0. ) |
57 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
58 |
1 2 57
|
omndadd |
|- ( ( R e. oMnd /\ ( X e. B /\ .0. e. B /\ ( ( invg ` R ) ` X ) e. B ) /\ X .<_ .0. ) -> ( X ( +g ` R ) ( ( invg ` R ) ` X ) ) .<_ ( .0. ( +g ` R ) ( ( invg ` R ) ` X ) ) ) |
59 |
23 15 25 18 56 58
|
syl131anc |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( X ( +g ` R ) ( ( invg ` R ) ` X ) ) .<_ ( .0. ( +g ` R ) ( ( invg ` R ) ` X ) ) ) |
60 |
1 57 3 16
|
grprinv |
|- ( ( R e. Grp /\ X e. B ) -> ( X ( +g ` R ) ( ( invg ` R ) ` X ) ) = .0. ) |
61 |
14 15 60
|
syl2anc |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( X ( +g ` R ) ( ( invg ` R ) ` X ) ) = .0. ) |
62 |
1 57 3
|
grplid |
|- ( ( R e. Grp /\ ( ( invg ` R ) ` X ) e. B ) -> ( .0. ( +g ` R ) ( ( invg ` R ) ` X ) ) = ( ( invg ` R ) ` X ) ) |
63 |
14 18 62
|
syl2anc |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( .0. ( +g ` R ) ( ( invg ` R ) ` X ) ) = ( ( invg ` R ) ` X ) ) |
64 |
59 61 63
|
3brtr3d |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> .0. .<_ ( ( invg ` R ) ` X ) ) |
65 |
1 2 3 4
|
orngmul |
|- ( ( R e. oRing /\ ( ( ( invg ` R ) ` X ) e. B /\ .0. .<_ ( ( invg ` R ) ` X ) ) /\ ( ( ( invg ` R ) ` X ) e. B /\ .0. .<_ ( ( invg ` R ) ` X ) ) ) -> .0. .<_ ( ( ( invg ` R ) ` X ) .x. ( ( invg ` R ) ` X ) ) ) |
66 |
10 18 64 18 64 65
|
syl122anc |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> .0. .<_ ( ( ( invg ` R ) ` X ) .x. ( ( invg ` R ) ` X ) ) ) |
67 |
1 4 16 12 15 15
|
ringm2neg |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( ( ( invg ` R ) ` X ) .x. ( ( invg ` R ) ` X ) ) = ( X .x. X ) ) |
68 |
66 67
|
breqtrd |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> .0. .<_ ( X .x. X ) ) |
69 |
9 68
|
pm2.61dan |
|- ( ( R e. oRing /\ X e. B ) -> .0. .<_ ( X .x. X ) ) |