| Step |
Hyp |
Ref |
Expression |
| 1 |
|
orngmul.0 |
|- B = ( Base ` R ) |
| 2 |
|
orngmul.1 |
|- .<_ = ( le ` R ) |
| 3 |
|
orngmul.2 |
|- .0. = ( 0g ` R ) |
| 4 |
|
orngmul.3 |
|- .x. = ( .r ` R ) |
| 5 |
|
simpll |
|- ( ( ( R e. oRing /\ X e. B ) /\ .0. .<_ X ) -> R e. oRing ) |
| 6 |
|
simplr |
|- ( ( ( R e. oRing /\ X e. B ) /\ .0. .<_ X ) -> X e. B ) |
| 7 |
|
simpr |
|- ( ( ( R e. oRing /\ X e. B ) /\ .0. .<_ X ) -> .0. .<_ X ) |
| 8 |
1 2 3 4
|
orngmul |
|- ( ( R e. oRing /\ ( X e. B /\ .0. .<_ X ) /\ ( X e. B /\ .0. .<_ X ) ) -> .0. .<_ ( X .x. X ) ) |
| 9 |
5 6 7 6 7 8
|
syl122anc |
|- ( ( ( R e. oRing /\ X e. B ) /\ .0. .<_ X ) -> .0. .<_ ( X .x. X ) ) |
| 10 |
|
simpll |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> R e. oRing ) |
| 11 |
|
orngring |
|- ( R e. oRing -> R e. Ring ) |
| 12 |
11
|
ad2antrr |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> R e. Ring ) |
| 13 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 14 |
12 13
|
syl |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> R e. Grp ) |
| 15 |
|
simplr |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> X e. B ) |
| 16 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
| 17 |
1 16
|
grpinvcl |
|- ( ( R e. Grp /\ X e. B ) -> ( ( invg ` R ) ` X ) e. B ) |
| 18 |
14 15 17
|
syl2anc |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( ( invg ` R ) ` X ) e. B ) |
| 19 |
|
orngogrp |
|- ( R e. oRing -> R e. oGrp ) |
| 20 |
|
isogrp |
|- ( R e. oGrp <-> ( R e. Grp /\ R e. oMnd ) ) |
| 21 |
20
|
simprbi |
|- ( R e. oGrp -> R e. oMnd ) |
| 22 |
19 21
|
syl |
|- ( R e. oRing -> R e. oMnd ) |
| 23 |
10 22
|
syl |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> R e. oMnd ) |
| 24 |
1 3
|
grpidcl |
|- ( R e. Grp -> .0. e. B ) |
| 25 |
14 24
|
syl |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> .0. e. B ) |
| 26 |
|
simpl |
|- ( ( R e. oRing /\ X e. B ) -> R e. oRing ) |
| 27 |
26 11 13 24
|
4syl |
|- ( ( R e. oRing /\ X e. B ) -> .0. e. B ) |
| 28 |
|
simpr |
|- ( ( R e. oRing /\ X e. B ) -> X e. B ) |
| 29 |
26 27 28
|
3jca |
|- ( ( R e. oRing /\ X e. B ) -> ( R e. oRing /\ .0. e. B /\ X e. B ) ) |
| 30 |
|
eqid |
|- ( lt ` R ) = ( lt ` R ) |
| 31 |
2 30
|
pltle |
|- ( ( R e. oRing /\ .0. e. B /\ X e. B ) -> ( .0. ( lt ` R ) X -> .0. .<_ X ) ) |
| 32 |
31
|
con3dimp |
|- ( ( ( R e. oRing /\ .0. e. B /\ X e. B ) /\ -. .0. .<_ X ) -> -. .0. ( lt ` R ) X ) |
| 33 |
29 32
|
sylan |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> -. .0. ( lt ` R ) X ) |
| 34 |
|
omndtos |
|- ( R e. oMnd -> R e. Toset ) |
| 35 |
1 2 30
|
tosso |
|- ( R e. Toset -> ( R e. Toset <-> ( ( lt ` R ) Or B /\ ( _I |` B ) C_ .<_ ) ) ) |
| 36 |
35
|
ibi |
|- ( R e. Toset -> ( ( lt ` R ) Or B /\ ( _I |` B ) C_ .<_ ) ) |
| 37 |
36
|
simpld |
|- ( R e. Toset -> ( lt ` R ) Or B ) |
| 38 |
10 22 34 37
|
4syl |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( lt ` R ) Or B ) |
| 39 |
|
solin |
|- ( ( ( lt ` R ) Or B /\ ( .0. e. B /\ X e. B ) ) -> ( .0. ( lt ` R ) X \/ .0. = X \/ X ( lt ` R ) .0. ) ) |
| 40 |
38 25 15 39
|
syl12anc |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( .0. ( lt ` R ) X \/ .0. = X \/ X ( lt ` R ) .0. ) ) |
| 41 |
|
3orass |
|- ( ( .0. ( lt ` R ) X \/ .0. = X \/ X ( lt ` R ) .0. ) <-> ( .0. ( lt ` R ) X \/ ( .0. = X \/ X ( lt ` R ) .0. ) ) ) |
| 42 |
40 41
|
sylib |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( .0. ( lt ` R ) X \/ ( .0. = X \/ X ( lt ` R ) .0. ) ) ) |
| 43 |
|
orel1 |
|- ( -. .0. ( lt ` R ) X -> ( ( .0. ( lt ` R ) X \/ ( .0. = X \/ X ( lt ` R ) .0. ) ) -> ( .0. = X \/ X ( lt ` R ) .0. ) ) ) |
| 44 |
33 42 43
|
sylc |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( .0. = X \/ X ( lt ` R ) .0. ) ) |
| 45 |
|
orcom |
|- ( ( .0. = X \/ X ( lt ` R ) .0. ) <-> ( X ( lt ` R ) .0. \/ .0. = X ) ) |
| 46 |
|
eqcom |
|- ( .0. = X <-> X = .0. ) |
| 47 |
46
|
orbi2i |
|- ( ( X ( lt ` R ) .0. \/ .0. = X ) <-> ( X ( lt ` R ) .0. \/ X = .0. ) ) |
| 48 |
45 47
|
bitri |
|- ( ( .0. = X \/ X ( lt ` R ) .0. ) <-> ( X ( lt ` R ) .0. \/ X = .0. ) ) |
| 49 |
44 48
|
sylib |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( X ( lt ` R ) .0. \/ X = .0. ) ) |
| 50 |
|
tospos |
|- ( R e. Toset -> R e. Poset ) |
| 51 |
10 22 34 50
|
4syl |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> R e. Poset ) |
| 52 |
1 2 30
|
pleval2 |
|- ( ( R e. Poset /\ X e. B /\ .0. e. B ) -> ( X .<_ .0. <-> ( X ( lt ` R ) .0. \/ X = .0. ) ) ) |
| 53 |
51 15 25 52
|
syl3anc |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( X .<_ .0. <-> ( X ( lt ` R ) .0. \/ X = .0. ) ) ) |
| 54 |
49 53
|
mpbird |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> X .<_ .0. ) |
| 55 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
| 56 |
1 2 55
|
omndadd |
|- ( ( R e. oMnd /\ ( X e. B /\ .0. e. B /\ ( ( invg ` R ) ` X ) e. B ) /\ X .<_ .0. ) -> ( X ( +g ` R ) ( ( invg ` R ) ` X ) ) .<_ ( .0. ( +g ` R ) ( ( invg ` R ) ` X ) ) ) |
| 57 |
23 15 25 18 54 56
|
syl131anc |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( X ( +g ` R ) ( ( invg ` R ) ` X ) ) .<_ ( .0. ( +g ` R ) ( ( invg ` R ) ` X ) ) ) |
| 58 |
1 55 3 16
|
grprinv |
|- ( ( R e. Grp /\ X e. B ) -> ( X ( +g ` R ) ( ( invg ` R ) ` X ) ) = .0. ) |
| 59 |
14 15 58
|
syl2anc |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( X ( +g ` R ) ( ( invg ` R ) ` X ) ) = .0. ) |
| 60 |
1 55 3
|
grplid |
|- ( ( R e. Grp /\ ( ( invg ` R ) ` X ) e. B ) -> ( .0. ( +g ` R ) ( ( invg ` R ) ` X ) ) = ( ( invg ` R ) ` X ) ) |
| 61 |
14 18 60
|
syl2anc |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( .0. ( +g ` R ) ( ( invg ` R ) ` X ) ) = ( ( invg ` R ) ` X ) ) |
| 62 |
57 59 61
|
3brtr3d |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> .0. .<_ ( ( invg ` R ) ` X ) ) |
| 63 |
1 2 3 4
|
orngmul |
|- ( ( R e. oRing /\ ( ( ( invg ` R ) ` X ) e. B /\ .0. .<_ ( ( invg ` R ) ` X ) ) /\ ( ( ( invg ` R ) ` X ) e. B /\ .0. .<_ ( ( invg ` R ) ` X ) ) ) -> .0. .<_ ( ( ( invg ` R ) ` X ) .x. ( ( invg ` R ) ` X ) ) ) |
| 64 |
10 18 62 18 62 63
|
syl122anc |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> .0. .<_ ( ( ( invg ` R ) ` X ) .x. ( ( invg ` R ) ` X ) ) ) |
| 65 |
1 4 16 12 15 15
|
ringm2neg |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> ( ( ( invg ` R ) ` X ) .x. ( ( invg ` R ) ` X ) ) = ( X .x. X ) ) |
| 66 |
64 65
|
breqtrd |
|- ( ( ( R e. oRing /\ X e. B ) /\ -. .0. .<_ X ) -> .0. .<_ ( X .x. X ) ) |
| 67 |
9 66
|
pm2.61dan |
|- ( ( R e. oRing /\ X e. B ) -> .0. .<_ ( X .x. X ) ) |