Metamath Proof Explorer


Theorem orngsqr

Description: In an ordered ring, all squares are positive. (Contributed by Thierry Arnoux, 20-Jan-2018)

Ref Expression
Hypotheses orngmul.0 B = Base R
orngmul.1 ˙ = R
orngmul.2 0 ˙ = 0 R
orngmul.3 · ˙ = R
Assertion orngsqr R oRing X B 0 ˙ ˙ X · ˙ X

Proof

Step Hyp Ref Expression
1 orngmul.0 B = Base R
2 orngmul.1 ˙ = R
3 orngmul.2 0 ˙ = 0 R
4 orngmul.3 · ˙ = R
5 simpll R oRing X B 0 ˙ ˙ X R oRing
6 simplr R oRing X B 0 ˙ ˙ X X B
7 simpr R oRing X B 0 ˙ ˙ X 0 ˙ ˙ X
8 1 2 3 4 orngmul R oRing X B 0 ˙ ˙ X X B 0 ˙ ˙ X 0 ˙ ˙ X · ˙ X
9 5 6 7 6 7 8 syl122anc R oRing X B 0 ˙ ˙ X 0 ˙ ˙ X · ˙ X
10 simpll R oRing X B ¬ 0 ˙ ˙ X R oRing
11 orngring R oRing R Ring
12 11 ad2antrr R oRing X B ¬ 0 ˙ ˙ X R Ring
13 ringgrp R Ring R Grp
14 12 13 syl R oRing X B ¬ 0 ˙ ˙ X R Grp
15 simplr R oRing X B ¬ 0 ˙ ˙ X X B
16 eqid inv g R = inv g R
17 1 16 grpinvcl R Grp X B inv g R X B
18 14 15 17 syl2anc R oRing X B ¬ 0 ˙ ˙ X inv g R X B
19 orngogrp R oRing R oGrp
20 isogrp R oGrp R Grp R oMnd
21 20 simprbi R oGrp R oMnd
22 19 21 syl R oRing R oMnd
23 10 22 syl R oRing X B ¬ 0 ˙ ˙ X R oMnd
24 1 3 grpidcl R Grp 0 ˙ B
25 14 24 syl R oRing X B ¬ 0 ˙ ˙ X 0 ˙ B
26 simpl R oRing X B R oRing
27 11 13 24 3syl R oRing 0 ˙ B
28 26 27 syl R oRing X B 0 ˙ B
29 simpr R oRing X B X B
30 26 28 29 3jca R oRing X B R oRing 0 ˙ B X B
31 eqid < R = < R
32 2 31 pltle R oRing 0 ˙ B X B 0 ˙ < R X 0 ˙ ˙ X
33 32 con3dimp R oRing 0 ˙ B X B ¬ 0 ˙ ˙ X ¬ 0 ˙ < R X
34 30 33 sylan R oRing X B ¬ 0 ˙ ˙ X ¬ 0 ˙ < R X
35 omndtos R oMnd R Toset
36 22 35 syl R oRing R Toset
37 1 2 31 tosso R Toset R Toset < R Or B I B ˙
38 37 ibi R Toset < R Or B I B ˙
39 38 simpld R Toset < R Or B
40 10 36 39 3syl R oRing X B ¬ 0 ˙ ˙ X < R Or B
41 solin < R Or B 0 ˙ B X B 0 ˙ < R X 0 ˙ = X X < R 0 ˙
42 40 25 15 41 syl12anc R oRing X B ¬ 0 ˙ ˙ X 0 ˙ < R X 0 ˙ = X X < R 0 ˙
43 3orass 0 ˙ < R X 0 ˙ = X X < R 0 ˙ 0 ˙ < R X 0 ˙ = X X < R 0 ˙
44 42 43 sylib R oRing X B ¬ 0 ˙ ˙ X 0 ˙ < R X 0 ˙ = X X < R 0 ˙
45 orel1 ¬ 0 ˙ < R X 0 ˙ < R X 0 ˙ = X X < R 0 ˙ 0 ˙ = X X < R 0 ˙
46 34 44 45 sylc R oRing X B ¬ 0 ˙ ˙ X 0 ˙ = X X < R 0 ˙
47 orcom 0 ˙ = X X < R 0 ˙ X < R 0 ˙ 0 ˙ = X
48 eqcom 0 ˙ = X X = 0 ˙
49 48 orbi2i X < R 0 ˙ 0 ˙ = X X < R 0 ˙ X = 0 ˙
50 47 49 bitri 0 ˙ = X X < R 0 ˙ X < R 0 ˙ X = 0 ˙
51 46 50 sylib R oRing X B ¬ 0 ˙ ˙ X X < R 0 ˙ X = 0 ˙
52 tospos R Toset R Poset
53 10 36 52 3syl R oRing X B ¬ 0 ˙ ˙ X R Poset
54 1 2 31 pleval2 R Poset X B 0 ˙ B X ˙ 0 ˙ X < R 0 ˙ X = 0 ˙
55 53 15 25 54 syl3anc R oRing X B ¬ 0 ˙ ˙ X X ˙ 0 ˙ X < R 0 ˙ X = 0 ˙
56 51 55 mpbird R oRing X B ¬ 0 ˙ ˙ X X ˙ 0 ˙
57 eqid + R = + R
58 1 2 57 omndadd R oMnd X B 0 ˙ B inv g R X B X ˙ 0 ˙ X + R inv g R X ˙ 0 ˙ + R inv g R X
59 23 15 25 18 56 58 syl131anc R oRing X B ¬ 0 ˙ ˙ X X + R inv g R X ˙ 0 ˙ + R inv g R X
60 1 57 3 16 grprinv R Grp X B X + R inv g R X = 0 ˙
61 14 15 60 syl2anc R oRing X B ¬ 0 ˙ ˙ X X + R inv g R X = 0 ˙
62 1 57 3 grplid R Grp inv g R X B 0 ˙ + R inv g R X = inv g R X
63 14 18 62 syl2anc R oRing X B ¬ 0 ˙ ˙ X 0 ˙ + R inv g R X = inv g R X
64 59 61 63 3brtr3d R oRing X B ¬ 0 ˙ ˙ X 0 ˙ ˙ inv g R X
65 1 2 3 4 orngmul R oRing inv g R X B 0 ˙ ˙ inv g R X inv g R X B 0 ˙ ˙ inv g R X 0 ˙ ˙ inv g R X · ˙ inv g R X
66 10 18 64 18 64 65 syl122anc R oRing X B ¬ 0 ˙ ˙ X 0 ˙ ˙ inv g R X · ˙ inv g R X
67 1 4 16 12 15 15 ringm2neg R oRing X B ¬ 0 ˙ ˙ X inv g R X · ˙ inv g R X = X · ˙ X
68 66 67 breqtrd R oRing X B ¬ 0 ˙ ˙ X 0 ˙ ˙ X · ˙ X
69 9 68 pm2.61dan R oRing X B 0 ˙ ˙ X · ˙ X