Step |
Hyp |
Ref |
Expression |
1 |
|
orngmul.0 |
|
2 |
|
orngmul.1 |
|
3 |
|
orngmul.2 |
|
4 |
|
orngmul.3 |
|
5 |
|
simpll |
|
6 |
|
simplr |
|
7 |
|
simpr |
|
8 |
1 2 3 4
|
orngmul |
|
9 |
5 6 7 6 7 8
|
syl122anc |
|
10 |
|
simpll |
|
11 |
|
orngring |
|
12 |
11
|
ad2antrr |
|
13 |
|
ringgrp |
|
14 |
12 13
|
syl |
|
15 |
|
simplr |
|
16 |
|
eqid |
|
17 |
1 16
|
grpinvcl |
|
18 |
14 15 17
|
syl2anc |
|
19 |
|
orngogrp |
|
20 |
|
isogrp |
|
21 |
20
|
simprbi |
|
22 |
19 21
|
syl |
|
23 |
10 22
|
syl |
|
24 |
1 3
|
grpidcl |
|
25 |
14 24
|
syl |
|
26 |
|
simpl |
|
27 |
11 13 24
|
3syl |
|
28 |
26 27
|
syl |
|
29 |
|
simpr |
|
30 |
26 28 29
|
3jca |
|
31 |
|
eqid |
|
32 |
2 31
|
pltle |
|
33 |
32
|
con3dimp |
|
34 |
30 33
|
sylan |
|
35 |
|
omndtos |
|
36 |
22 35
|
syl |
|
37 |
1 2 31
|
tosso |
|
38 |
37
|
ibi |
|
39 |
38
|
simpld |
|
40 |
10 36 39
|
3syl |
|
41 |
|
solin |
|
42 |
40 25 15 41
|
syl12anc |
|
43 |
|
3orass |
|
44 |
42 43
|
sylib |
|
45 |
|
orel1 |
|
46 |
34 44 45
|
sylc |
|
47 |
|
orcom |
|
48 |
|
eqcom |
|
49 |
48
|
orbi2i |
|
50 |
47 49
|
bitri |
|
51 |
46 50
|
sylib |
|
52 |
|
tospos |
|
53 |
10 36 52
|
3syl |
|
54 |
1 2 31
|
pleval2 |
|
55 |
53 15 25 54
|
syl3anc |
|
56 |
51 55
|
mpbird |
|
57 |
|
eqid |
|
58 |
1 2 57
|
omndadd |
|
59 |
23 15 25 18 56 58
|
syl131anc |
|
60 |
1 57 3 16
|
grprinv |
|
61 |
14 15 60
|
syl2anc |
|
62 |
1 57 3
|
grplid |
|
63 |
14 18 62
|
syl2anc |
|
64 |
59 61 63
|
3brtr3d |
|
65 |
1 2 3 4
|
orngmul |
|
66 |
10 18 64 18 64 65
|
syl122anc |
|
67 |
1 4 16 12 15 15
|
ringm2neg |
|
68 |
66 67
|
breqtrd |
|
69 |
9 68
|
pm2.61dan |
|