Metamath Proof Explorer


Theorem orngsqr

Description: In an ordered ring, all squares are positive. (Contributed by Thierry Arnoux, 20-Jan-2018)

Ref Expression
Hypotheses orngmul.0 B = Base R
orngmul.1 ˙ = R
orngmul.2 0 ˙ = 0 R
orngmul.3 · ˙ = R
Assertion orngsqr R oRing X B 0 ˙ ˙ X · ˙ X

Proof

Step Hyp Ref Expression
1 orngmul.0 B = Base R
2 orngmul.1 ˙ = R
3 orngmul.2 0 ˙ = 0 R
4 orngmul.3 · ˙ = R
5 simpll R oRing X B 0 ˙ ˙ X R oRing
6 simplr R oRing X B 0 ˙ ˙ X X B
7 simpr R oRing X B 0 ˙ ˙ X 0 ˙ ˙ X
8 1 2 3 4 orngmul R oRing X B 0 ˙ ˙ X X B 0 ˙ ˙ X 0 ˙ ˙ X · ˙ X
9 5 6 7 6 7 8 syl122anc R oRing X B 0 ˙ ˙ X 0 ˙ ˙ X · ˙ X
10 simpll R oRing X B ¬ 0 ˙ ˙ X R oRing
11 orngring R oRing R Ring
12 11 ad2antrr R oRing X B ¬ 0 ˙ ˙ X R Ring
13 ringgrp R Ring R Grp
14 12 13 syl R oRing X B ¬ 0 ˙ ˙ X R Grp
15 simplr R oRing X B ¬ 0 ˙ ˙ X X B
16 eqid inv g R = inv g R
17 1 16 grpinvcl R Grp X B inv g R X B
18 14 15 17 syl2anc R oRing X B ¬ 0 ˙ ˙ X inv g R X B
19 orngogrp R oRing R oGrp
20 isogrp R oGrp R Grp R oMnd
21 20 simprbi R oGrp R oMnd
22 19 21 syl R oRing R oMnd
23 10 22 syl R oRing X B ¬ 0 ˙ ˙ X R oMnd
24 1 3 grpidcl R Grp 0 ˙ B
25 14 24 syl R oRing X B ¬ 0 ˙ ˙ X 0 ˙ B
26 simpl R oRing X B R oRing
27 26 11 13 24 4syl R oRing X B 0 ˙ B
28 simpr R oRing X B X B
29 26 27 28 3jca R oRing X B R oRing 0 ˙ B X B
30 eqid < R = < R
31 2 30 pltle R oRing 0 ˙ B X B 0 ˙ < R X 0 ˙ ˙ X
32 31 con3dimp R oRing 0 ˙ B X B ¬ 0 ˙ ˙ X ¬ 0 ˙ < R X
33 29 32 sylan R oRing X B ¬ 0 ˙ ˙ X ¬ 0 ˙ < R X
34 omndtos R oMnd R Toset
35 1 2 30 tosso R Toset R Toset < R Or B I B ˙
36 35 ibi R Toset < R Or B I B ˙
37 36 simpld R Toset < R Or B
38 10 22 34 37 4syl R oRing X B ¬ 0 ˙ ˙ X < R Or B
39 solin < R Or B 0 ˙ B X B 0 ˙ < R X 0 ˙ = X X < R 0 ˙
40 38 25 15 39 syl12anc R oRing X B ¬ 0 ˙ ˙ X 0 ˙ < R X 0 ˙ = X X < R 0 ˙
41 3orass 0 ˙ < R X 0 ˙ = X X < R 0 ˙ 0 ˙ < R X 0 ˙ = X X < R 0 ˙
42 40 41 sylib R oRing X B ¬ 0 ˙ ˙ X 0 ˙ < R X 0 ˙ = X X < R 0 ˙
43 orel1 ¬ 0 ˙ < R X 0 ˙ < R X 0 ˙ = X X < R 0 ˙ 0 ˙ = X X < R 0 ˙
44 33 42 43 sylc R oRing X B ¬ 0 ˙ ˙ X 0 ˙ = X X < R 0 ˙
45 orcom 0 ˙ = X X < R 0 ˙ X < R 0 ˙ 0 ˙ = X
46 eqcom 0 ˙ = X X = 0 ˙
47 46 orbi2i X < R 0 ˙ 0 ˙ = X X < R 0 ˙ X = 0 ˙
48 45 47 bitri 0 ˙ = X X < R 0 ˙ X < R 0 ˙ X = 0 ˙
49 44 48 sylib R oRing X B ¬ 0 ˙ ˙ X X < R 0 ˙ X = 0 ˙
50 tospos R Toset R Poset
51 10 22 34 50 4syl R oRing X B ¬ 0 ˙ ˙ X R Poset
52 1 2 30 pleval2 R Poset X B 0 ˙ B X ˙ 0 ˙ X < R 0 ˙ X = 0 ˙
53 51 15 25 52 syl3anc R oRing X B ¬ 0 ˙ ˙ X X ˙ 0 ˙ X < R 0 ˙ X = 0 ˙
54 49 53 mpbird R oRing X B ¬ 0 ˙ ˙ X X ˙ 0 ˙
55 eqid + R = + R
56 1 2 55 omndadd R oMnd X B 0 ˙ B inv g R X B X ˙ 0 ˙ X + R inv g R X ˙ 0 ˙ + R inv g R X
57 23 15 25 18 54 56 syl131anc R oRing X B ¬ 0 ˙ ˙ X X + R inv g R X ˙ 0 ˙ + R inv g R X
58 1 55 3 16 grprinv R Grp X B X + R inv g R X = 0 ˙
59 14 15 58 syl2anc R oRing X B ¬ 0 ˙ ˙ X X + R inv g R X = 0 ˙
60 1 55 3 grplid R Grp inv g R X B 0 ˙ + R inv g R X = inv g R X
61 14 18 60 syl2anc R oRing X B ¬ 0 ˙ ˙ X 0 ˙ + R inv g R X = inv g R X
62 57 59 61 3brtr3d R oRing X B ¬ 0 ˙ ˙ X 0 ˙ ˙ inv g R X
63 1 2 3 4 orngmul R oRing inv g R X B 0 ˙ ˙ inv g R X inv g R X B 0 ˙ ˙ inv g R X 0 ˙ ˙ inv g R X · ˙ inv g R X
64 10 18 62 18 62 63 syl122anc R oRing X B ¬ 0 ˙ ˙ X 0 ˙ ˙ inv g R X · ˙ inv g R X
65 1 4 16 12 15 15 ringm2neg R oRing X B ¬ 0 ˙ ˙ X inv g R X · ˙ inv g R X = X · ˙ X
66 64 65 breqtrd R oRing X B ¬ 0 ˙ ˙ X 0 ˙ ˙ X · ˙ X
67 9 66 pm2.61dan R oRing X B 0 ˙ ˙ X · ˙ X