Metamath Proof Explorer


Theorem tosso

Description: Write the totally ordered set structure predicate in terms of the proper class strict order predicate. (Contributed by Mario Carneiro, 8-Feb-2015)

Ref Expression
Hypotheses tosso.b B=BaseK
tosso.l ˙=K
tosso.s <˙=<K
Assertion tosso KVKToset<˙OrBIB˙

Proof

Step Hyp Ref Expression
1 tosso.b B=BaseK
2 tosso.l ˙=K
3 tosso.s <˙=<K
4 1 2 3 pleval2 KPosetxByBx˙yx<˙yx=y
5 4 3expb KPosetxByBx˙yx<˙yx=y
6 1 2 3 pleval2 KPosetyBxBy˙xy<˙xy=x
7 equcom y=xx=y
8 7 orbi2i y<˙xy=xy<˙xx=y
9 6 8 bitrdi KPosetyBxBy˙xy<˙xx=y
10 9 3com23 KPosetxByBy˙xy<˙xx=y
11 10 3expb KPosetxByBy˙xy<˙xx=y
12 5 11 orbi12d KPosetxByBx˙yy˙xx<˙yx=yy<˙xx=y
13 df-3or x<˙yx=yy<˙xx<˙yx=yy<˙x
14 or32 x<˙yx=yy<˙xx<˙yy<˙xx=y
15 orordir x<˙yy<˙xx=yx<˙yx=yy<˙xx=y
16 14 15 bitri x<˙yx=yy<˙xx<˙yx=yy<˙xx=y
17 13 16 bitri x<˙yx=yy<˙xx<˙yx=yy<˙xx=y
18 12 17 bitr4di KPosetxByBx˙yy˙xx<˙yx=yy<˙x
19 18 2ralbidva KPosetxByBx˙yy˙xxByBx<˙yx=yy<˙x
20 19 pm5.32i KPosetxByBx˙yy˙xKPosetxByBx<˙yx=yy<˙x
21 1 2 3 pospo KVKPoset<˙PoBIB˙
22 21 anbi1d KVKPosetxByBx<˙yx=yy<˙x<˙PoBIB˙xByBx<˙yx=yy<˙x
23 20 22 bitrid KVKPosetxByBx˙yy˙x<˙PoBIB˙xByBx<˙yx=yy<˙x
24 1 2 istos KTosetKPosetxByBx˙yy˙x
25 df-so <˙OrB<˙PoBxByBx<˙yx=yy<˙x
26 25 anbi1i <˙OrBIB˙<˙PoBxByBx<˙yx=yy<˙xIB˙
27 an32 <˙PoBxByBx<˙yx=yy<˙xIB˙<˙PoBIB˙xByBx<˙yx=yy<˙x
28 26 27 bitri <˙OrBIB˙<˙PoBIB˙xByBx<˙yx=yy<˙x
29 23 24 28 3bitr4g KVKToset<˙OrBIB˙