Description: In an ordered ring, the ordering is compatible with the ring multiplication operation. (Contributed by Thierry Arnoux, 20-Jan-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | orngmul.0 | |
|
orngmul.1 | |
||
orngmul.2 | |
||
orngmul.3 | |
||
Assertion | orngmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orngmul.0 | |
|
2 | orngmul.1 | |
|
3 | orngmul.2 | |
|
4 | orngmul.3 | |
|
5 | simp2r | |
|
6 | simp3r | |
|
7 | simp2l | |
|
8 | simp3l | |
|
9 | 1 3 4 2 | isorng | |
10 | 9 | simp3bi | |
11 | 10 | 3ad2ant1 | |
12 | breq2 | |
|
13 | 12 | anbi1d | |
14 | oveq1 | |
|
15 | 14 | breq2d | |
16 | 13 15 | imbi12d | |
17 | breq2 | |
|
18 | 17 | anbi2d | |
19 | oveq2 | |
|
20 | 19 | breq2d | |
21 | 18 20 | imbi12d | |
22 | 16 21 | rspc2va | |
23 | 7 8 11 22 | syl21anc | |
24 | 5 6 23 | mp2and | |