Step |
Hyp |
Ref |
Expression |
1 |
|
orngmul.0 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
orngmul.1 |
⊢ ≤ = ( le ‘ 𝑅 ) |
3 |
|
orngmul.2 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
orngmul.3 |
⊢ · = ( .r ‘ 𝑅 ) |
5 |
|
simp2r |
⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌 ) ) → 0 ≤ 𝑋 ) |
6 |
|
simp3r |
⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌 ) ) → 0 ≤ 𝑌 ) |
7 |
|
simp2l |
⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
8 |
|
simp3l |
⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
9 |
1 3 4 2
|
isorng |
⊢ ( 𝑅 ∈ oRing ↔ ( 𝑅 ∈ Ring ∧ 𝑅 ∈ oGrp ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) ) |
10 |
9
|
simp3bi |
⊢ ( 𝑅 ∈ oRing → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌 ) ) → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) |
12 |
|
breq2 |
⊢ ( 𝑎 = 𝑋 → ( 0 ≤ 𝑎 ↔ 0 ≤ 𝑋 ) ) |
13 |
12
|
anbi1d |
⊢ ( 𝑎 = 𝑋 → ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) ↔ ( 0 ≤ 𝑋 ∧ 0 ≤ 𝑏 ) ) ) |
14 |
|
oveq1 |
⊢ ( 𝑎 = 𝑋 → ( 𝑎 · 𝑏 ) = ( 𝑋 · 𝑏 ) ) |
15 |
14
|
breq2d |
⊢ ( 𝑎 = 𝑋 → ( 0 ≤ ( 𝑎 · 𝑏 ) ↔ 0 ≤ ( 𝑋 · 𝑏 ) ) ) |
16 |
13 15
|
imbi12d |
⊢ ( 𝑎 = 𝑋 → ( ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ↔ ( ( 0 ≤ 𝑋 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑋 · 𝑏 ) ) ) ) |
17 |
|
breq2 |
⊢ ( 𝑏 = 𝑌 → ( 0 ≤ 𝑏 ↔ 0 ≤ 𝑌 ) ) |
18 |
17
|
anbi2d |
⊢ ( 𝑏 = 𝑌 → ( ( 0 ≤ 𝑋 ∧ 0 ≤ 𝑏 ) ↔ ( 0 ≤ 𝑋 ∧ 0 ≤ 𝑌 ) ) ) |
19 |
|
oveq2 |
⊢ ( 𝑏 = 𝑌 → ( 𝑋 · 𝑏 ) = ( 𝑋 · 𝑌 ) ) |
20 |
19
|
breq2d |
⊢ ( 𝑏 = 𝑌 → ( 0 ≤ ( 𝑋 · 𝑏 ) ↔ 0 ≤ ( 𝑋 · 𝑌 ) ) ) |
21 |
18 20
|
imbi12d |
⊢ ( 𝑏 = 𝑌 → ( ( ( 0 ≤ 𝑋 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑋 · 𝑏 ) ) ↔ ( ( 0 ≤ 𝑋 ∧ 0 ≤ 𝑌 ) → 0 ≤ ( 𝑋 · 𝑌 ) ) ) ) |
22 |
16 21
|
rspc2va |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( ( 0 ≤ 𝑎 ∧ 0 ≤ 𝑏 ) → 0 ≤ ( 𝑎 · 𝑏 ) ) ) → ( ( 0 ≤ 𝑋 ∧ 0 ≤ 𝑌 ) → 0 ≤ ( 𝑋 · 𝑌 ) ) ) |
23 |
7 8 11 22
|
syl21anc |
⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌 ) ) → ( ( 0 ≤ 𝑋 ∧ 0 ≤ 𝑌 ) → 0 ≤ ( 𝑋 · 𝑌 ) ) ) |
24 |
5 6 23
|
mp2and |
⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 0 ≤ 𝑌 ) ) → 0 ≤ ( 𝑋 · 𝑌 ) ) |