Step |
Hyp |
Ref |
Expression |
1 |
|
orngmul.0 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
orngmul.1 |
⊢ ≤ = ( le ‘ 𝑅 ) |
3 |
|
orngmul.2 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
orngmul.3 |
⊢ · = ( .r ‘ 𝑅 ) |
5 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 𝑅 ∈ oRing ) |
6 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 𝑋 ∈ 𝐵 ) |
7 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ 𝑋 ) |
8 |
1 2 3 4
|
orngmul |
⊢ ( ( 𝑅 ∈ oRing ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ≤ 𝑋 ) ) → 0 ≤ ( 𝑋 · 𝑋 ) ) |
9 |
5 6 7 6 7 8
|
syl122anc |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ 0 ≤ 𝑋 ) → 0 ≤ ( 𝑋 · 𝑋 ) ) |
10 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 𝑅 ∈ oRing ) |
11 |
|
orngring |
⊢ ( 𝑅 ∈ oRing → 𝑅 ∈ Ring ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 𝑅 ∈ Ring ) |
13 |
|
ringgrp |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) |
14 |
12 13
|
syl |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 𝑅 ∈ Grp ) |
15 |
|
simplr |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 𝑋 ∈ 𝐵 ) |
16 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
17 |
1 16
|
grpinvcl |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ) |
18 |
14 15 17
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ) |
19 |
|
orngogrp |
⊢ ( 𝑅 ∈ oRing → 𝑅 ∈ oGrp ) |
20 |
|
isogrp |
⊢ ( 𝑅 ∈ oGrp ↔ ( 𝑅 ∈ Grp ∧ 𝑅 ∈ oMnd ) ) |
21 |
20
|
simprbi |
⊢ ( 𝑅 ∈ oGrp → 𝑅 ∈ oMnd ) |
22 |
19 21
|
syl |
⊢ ( 𝑅 ∈ oRing → 𝑅 ∈ oMnd ) |
23 |
10 22
|
syl |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 𝑅 ∈ oMnd ) |
24 |
1 3
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → 0 ∈ 𝐵 ) |
25 |
14 24
|
syl |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 0 ∈ 𝐵 ) |
26 |
|
simpl |
⊢ ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) → 𝑅 ∈ oRing ) |
27 |
11 13 24
|
3syl |
⊢ ( 𝑅 ∈ oRing → 0 ∈ 𝐵 ) |
28 |
26 27
|
syl |
⊢ ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
29 |
|
simpr |
⊢ ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
30 |
26 28 29
|
3jca |
⊢ ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
31 |
|
eqid |
⊢ ( lt ‘ 𝑅 ) = ( lt ‘ 𝑅 ) |
32 |
2 31
|
pltle |
⊢ ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 0 ( lt ‘ 𝑅 ) 𝑋 → 0 ≤ 𝑋 ) ) |
33 |
32
|
con3dimp |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ¬ 0 ( lt ‘ 𝑅 ) 𝑋 ) |
34 |
30 33
|
sylan |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ¬ 0 ( lt ‘ 𝑅 ) 𝑋 ) |
35 |
|
omndtos |
⊢ ( 𝑅 ∈ oMnd → 𝑅 ∈ Toset ) |
36 |
22 35
|
syl |
⊢ ( 𝑅 ∈ oRing → 𝑅 ∈ Toset ) |
37 |
1 2 31
|
tosso |
⊢ ( 𝑅 ∈ Toset → ( 𝑅 ∈ Toset ↔ ( ( lt ‘ 𝑅 ) Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ≤ ) ) ) |
38 |
37
|
ibi |
⊢ ( 𝑅 ∈ Toset → ( ( lt ‘ 𝑅 ) Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ≤ ) ) |
39 |
38
|
simpld |
⊢ ( 𝑅 ∈ Toset → ( lt ‘ 𝑅 ) Or 𝐵 ) |
40 |
10 36 39
|
3syl |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( lt ‘ 𝑅 ) Or 𝐵 ) |
41 |
|
solin |
⊢ ( ( ( lt ‘ 𝑅 ) Or 𝐵 ∧ ( 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( 0 ( lt ‘ 𝑅 ) 𝑋 ∨ 0 = 𝑋 ∨ 𝑋 ( lt ‘ 𝑅 ) 0 ) ) |
42 |
40 25 15 41
|
syl12anc |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( 0 ( lt ‘ 𝑅 ) 𝑋 ∨ 0 = 𝑋 ∨ 𝑋 ( lt ‘ 𝑅 ) 0 ) ) |
43 |
|
3orass |
⊢ ( ( 0 ( lt ‘ 𝑅 ) 𝑋 ∨ 0 = 𝑋 ∨ 𝑋 ( lt ‘ 𝑅 ) 0 ) ↔ ( 0 ( lt ‘ 𝑅 ) 𝑋 ∨ ( 0 = 𝑋 ∨ 𝑋 ( lt ‘ 𝑅 ) 0 ) ) ) |
44 |
42 43
|
sylib |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( 0 ( lt ‘ 𝑅 ) 𝑋 ∨ ( 0 = 𝑋 ∨ 𝑋 ( lt ‘ 𝑅 ) 0 ) ) ) |
45 |
|
orel1 |
⊢ ( ¬ 0 ( lt ‘ 𝑅 ) 𝑋 → ( ( 0 ( lt ‘ 𝑅 ) 𝑋 ∨ ( 0 = 𝑋 ∨ 𝑋 ( lt ‘ 𝑅 ) 0 ) ) → ( 0 = 𝑋 ∨ 𝑋 ( lt ‘ 𝑅 ) 0 ) ) ) |
46 |
34 44 45
|
sylc |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( 0 = 𝑋 ∨ 𝑋 ( lt ‘ 𝑅 ) 0 ) ) |
47 |
|
orcom |
⊢ ( ( 0 = 𝑋 ∨ 𝑋 ( lt ‘ 𝑅 ) 0 ) ↔ ( 𝑋 ( lt ‘ 𝑅 ) 0 ∨ 0 = 𝑋 ) ) |
48 |
|
eqcom |
⊢ ( 0 = 𝑋 ↔ 𝑋 = 0 ) |
49 |
48
|
orbi2i |
⊢ ( ( 𝑋 ( lt ‘ 𝑅 ) 0 ∨ 0 = 𝑋 ) ↔ ( 𝑋 ( lt ‘ 𝑅 ) 0 ∨ 𝑋 = 0 ) ) |
50 |
47 49
|
bitri |
⊢ ( ( 0 = 𝑋 ∨ 𝑋 ( lt ‘ 𝑅 ) 0 ) ↔ ( 𝑋 ( lt ‘ 𝑅 ) 0 ∨ 𝑋 = 0 ) ) |
51 |
46 50
|
sylib |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( 𝑋 ( lt ‘ 𝑅 ) 0 ∨ 𝑋 = 0 ) ) |
52 |
|
tospos |
⊢ ( 𝑅 ∈ Toset → 𝑅 ∈ Poset ) |
53 |
10 36 52
|
3syl |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 𝑅 ∈ Poset ) |
54 |
1 2 31
|
pleval2 |
⊢ ( ( 𝑅 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ) → ( 𝑋 ≤ 0 ↔ ( 𝑋 ( lt ‘ 𝑅 ) 0 ∨ 𝑋 = 0 ) ) ) |
55 |
53 15 25 54
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( 𝑋 ≤ 0 ↔ ( 𝑋 ( lt ‘ 𝑅 ) 0 ∨ 𝑋 = 0 ) ) ) |
56 |
51 55
|
mpbird |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 𝑋 ≤ 0 ) |
57 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
58 |
1 2 57
|
omndadd |
⊢ ( ( 𝑅 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ) ∧ 𝑋 ≤ 0 ) → ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) ≤ ( 0 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) ) |
59 |
23 15 25 18 56 58
|
syl131anc |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) ≤ ( 0 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) ) |
60 |
1 57 3 16
|
grprinv |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) = 0 ) |
61 |
14 15 60
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( 𝑋 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) = 0 ) |
62 |
1 57 3
|
grplid |
⊢ ( ( 𝑅 ∈ Grp ∧ ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ) → ( 0 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) = ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) |
63 |
14 18 62
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( 0 ( +g ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) = ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) |
64 |
59 61 63
|
3brtr3d |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 0 ≤ ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) |
65 |
1 2 3 4
|
orngmul |
⊢ ( ( 𝑅 ∈ oRing ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ∧ 0 ≤ ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) ∧ ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ∈ 𝐵 ∧ 0 ≤ ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) ) → 0 ≤ ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) · ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) ) |
66 |
10 18 64 18 64 65
|
syl122anc |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 0 ≤ ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) · ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) ) |
67 |
1 4 16 12 15 15
|
ringm2neg |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → ( ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) · ( ( invg ‘ 𝑅 ) ‘ 𝑋 ) ) = ( 𝑋 · 𝑋 ) ) |
68 |
66 67
|
breqtrd |
⊢ ( ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) ∧ ¬ 0 ≤ 𝑋 ) → 0 ≤ ( 𝑋 · 𝑋 ) ) |
69 |
9 68
|
pm2.61dan |
⊢ ( ( 𝑅 ∈ oRing ∧ 𝑋 ∈ 𝐵 ) → 0 ≤ ( 𝑋 · 𝑋 ) ) |