Description: A Toset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tospos | ⊢ ( 𝐹 ∈ Toset → 𝐹 ∈ Poset ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 2 | eqid | ⊢ ( le ‘ 𝐹 ) = ( le ‘ 𝐹 ) | |
| 3 | 1 2 | istos | ⊢ ( 𝐹 ∈ Toset ↔ ( 𝐹 ∈ Poset ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦 ∨ 𝑦 ( le ‘ 𝐹 ) 𝑥 ) ) ) |
| 4 | 3 | simplbi | ⊢ ( 𝐹 ∈ Toset → 𝐹 ∈ Poset ) |