Metamath Proof Explorer


Theorem tospos

Description: A Toset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018)

Ref Expression
Assertion tospos ( 𝐹 ∈ Toset → 𝐹 ∈ Poset )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
2 eqid ( le ‘ 𝐹 ) = ( le ‘ 𝐹 )
3 1 2 istos ( 𝐹 ∈ Toset ↔ ( 𝐹 ∈ Poset ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝐹 ) ( 𝑥 ( le ‘ 𝐹 ) 𝑦𝑦 ( le ‘ 𝐹 ) 𝑥 ) ) )
4 3 simplbi ( 𝐹 ∈ Toset → 𝐹 ∈ Poset )