| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omndadd.0 |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
omndadd.1 |
⊢ ≤ = ( le ‘ 𝑀 ) |
| 3 |
|
omndadd.2 |
⊢ + = ( +g ‘ 𝑀 ) |
| 4 |
1 3 2
|
isomnd |
⊢ ( 𝑀 ∈ oMnd ↔ ( 𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) ) |
| 5 |
4
|
simp3bi |
⊢ ( 𝑀 ∈ oMnd → ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) |
| 6 |
|
breq1 |
⊢ ( 𝑎 = 𝑋 → ( 𝑎 ≤ 𝑏 ↔ 𝑋 ≤ 𝑏 ) ) |
| 7 |
|
oveq1 |
⊢ ( 𝑎 = 𝑋 → ( 𝑎 + 𝑐 ) = ( 𝑋 + 𝑐 ) ) |
| 8 |
7
|
breq1d |
⊢ ( 𝑎 = 𝑋 → ( ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ↔ ( 𝑋 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) |
| 9 |
6 8
|
imbi12d |
⊢ ( 𝑎 = 𝑋 → ( ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ↔ ( 𝑋 ≤ 𝑏 → ( 𝑋 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) ) |
| 10 |
|
breq2 |
⊢ ( 𝑏 = 𝑌 → ( 𝑋 ≤ 𝑏 ↔ 𝑋 ≤ 𝑌 ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝑏 = 𝑌 → ( 𝑏 + 𝑐 ) = ( 𝑌 + 𝑐 ) ) |
| 12 |
11
|
breq2d |
⊢ ( 𝑏 = 𝑌 → ( ( 𝑋 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ↔ ( 𝑋 + 𝑐 ) ≤ ( 𝑌 + 𝑐 ) ) ) |
| 13 |
10 12
|
imbi12d |
⊢ ( 𝑏 = 𝑌 → ( ( 𝑋 ≤ 𝑏 → ( 𝑋 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ↔ ( 𝑋 ≤ 𝑌 → ( 𝑋 + 𝑐 ) ≤ ( 𝑌 + 𝑐 ) ) ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑐 = 𝑍 → ( 𝑋 + 𝑐 ) = ( 𝑋 + 𝑍 ) ) |
| 15 |
|
oveq2 |
⊢ ( 𝑐 = 𝑍 → ( 𝑌 + 𝑐 ) = ( 𝑌 + 𝑍 ) ) |
| 16 |
14 15
|
breq12d |
⊢ ( 𝑐 = 𝑍 → ( ( 𝑋 + 𝑐 ) ≤ ( 𝑌 + 𝑐 ) ↔ ( 𝑋 + 𝑍 ) ≤ ( 𝑌 + 𝑍 ) ) ) |
| 17 |
16
|
imbi2d |
⊢ ( 𝑐 = 𝑍 → ( ( 𝑋 ≤ 𝑌 → ( 𝑋 + 𝑐 ) ≤ ( 𝑌 + 𝑐 ) ) ↔ ( 𝑋 ≤ 𝑌 → ( 𝑋 + 𝑍 ) ≤ ( 𝑌 + 𝑍 ) ) ) ) |
| 18 |
9 13 17
|
rspc3v |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 + 𝑍 ) ≤ ( 𝑌 + 𝑍 ) ) ) ) |
| 19 |
5 18
|
mpan9 |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 + 𝑍 ) ≤ ( 𝑌 + 𝑍 ) ) ) |
| 20 |
19
|
3impia |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 + 𝑍 ) ≤ ( 𝑌 + 𝑍 ) ) |