Step |
Hyp |
Ref |
Expression |
1 |
|
isomnd.0 |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
isomnd.1 |
⊢ + = ( +g ‘ 𝑀 ) |
3 |
|
isomnd.2 |
⊢ ≤ = ( le ‘ 𝑀 ) |
4 |
|
fvexd |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) ∈ V ) |
5 |
|
simpr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = ( Base ‘ 𝑚 ) ) → 𝑣 = ( Base ‘ 𝑚 ) ) |
6 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = ( Base ‘ 𝑀 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = ( Base ‘ 𝑚 ) ) → ( Base ‘ 𝑚 ) = ( Base ‘ 𝑀 ) ) |
8 |
5 7
|
eqtrd |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = ( Base ‘ 𝑚 ) ) → 𝑣 = ( Base ‘ 𝑀 ) ) |
9 |
8 1
|
eqtr4di |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = ( Base ‘ 𝑚 ) ) → 𝑣 = 𝐵 ) |
10 |
|
raleq |
⊢ ( 𝑣 = 𝐵 → ( ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ↔ ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) ) |
11 |
10
|
raleqbi1dv |
⊢ ( 𝑣 = 𝐵 → ( ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ↔ ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) ) |
12 |
11
|
raleqbi1dv |
⊢ ( 𝑣 = 𝐵 → ( ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) ) |
13 |
9 12
|
syl |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = ( Base ‘ 𝑚 ) ) → ( ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) ) |
14 |
13
|
anbi2d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = ( Base ‘ 𝑚 ) ) → ( ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) ↔ ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) ) ) |
15 |
14
|
sbcbidv |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = ( Base ‘ 𝑚 ) ) → ( [ ( le ‘ 𝑚 ) / 𝑙 ] ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) ↔ [ ( le ‘ 𝑚 ) / 𝑙 ] ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) ) ) |
16 |
15
|
sbcbidv |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑣 = ( Base ‘ 𝑚 ) ) → ( [ ( +g ‘ 𝑚 ) / 𝑝 ] [ ( le ‘ 𝑚 ) / 𝑙 ] ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) ↔ [ ( +g ‘ 𝑚 ) / 𝑝 ] [ ( le ‘ 𝑚 ) / 𝑙 ] ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) ) ) |
17 |
4 16
|
sbcied |
⊢ ( 𝑚 = 𝑀 → ( [ ( Base ‘ 𝑚 ) / 𝑣 ] [ ( +g ‘ 𝑚 ) / 𝑝 ] [ ( le ‘ 𝑚 ) / 𝑙 ] ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) ↔ [ ( +g ‘ 𝑚 ) / 𝑝 ] [ ( le ‘ 𝑚 ) / 𝑙 ] ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) ) ) |
18 |
|
fvexd |
⊢ ( 𝑚 = 𝑀 → ( +g ‘ 𝑚 ) ∈ V ) |
19 |
|
simpr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑝 = ( +g ‘ 𝑚 ) ) → 𝑝 = ( +g ‘ 𝑚 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( +g ‘ 𝑚 ) = ( +g ‘ 𝑀 ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑝 = ( +g ‘ 𝑚 ) ) → ( +g ‘ 𝑚 ) = ( +g ‘ 𝑀 ) ) |
22 |
19 21
|
eqtrd |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑝 = ( +g ‘ 𝑚 ) ) → 𝑝 = ( +g ‘ 𝑀 ) ) |
23 |
22 2
|
eqtr4di |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑝 = ( +g ‘ 𝑚 ) ) → 𝑝 = + ) |
24 |
23
|
oveqd |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑝 = ( +g ‘ 𝑚 ) ) → ( 𝑎 𝑝 𝑐 ) = ( 𝑎 + 𝑐 ) ) |
25 |
23
|
oveqd |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑝 = ( +g ‘ 𝑚 ) ) → ( 𝑏 𝑝 𝑐 ) = ( 𝑏 + 𝑐 ) ) |
26 |
24 25
|
breq12d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑝 = ( +g ‘ 𝑚 ) ) → ( ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ↔ ( 𝑎 + 𝑐 ) 𝑙 ( 𝑏 + 𝑐 ) ) ) |
27 |
26
|
imbi2d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑝 = ( +g ‘ 𝑚 ) ) → ( ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ↔ ( 𝑎 𝑙 𝑏 → ( 𝑎 + 𝑐 ) 𝑙 ( 𝑏 + 𝑐 ) ) ) ) |
28 |
27
|
ralbidv |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑝 = ( +g ‘ 𝑚 ) ) → ( ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ↔ ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 + 𝑐 ) 𝑙 ( 𝑏 + 𝑐 ) ) ) ) |
29 |
28
|
2ralbidv |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑝 = ( +g ‘ 𝑚 ) ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 + 𝑐 ) 𝑙 ( 𝑏 + 𝑐 ) ) ) ) |
30 |
29
|
anbi2d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑝 = ( +g ‘ 𝑚 ) ) → ( ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) ↔ ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 + 𝑐 ) 𝑙 ( 𝑏 + 𝑐 ) ) ) ) ) |
31 |
30
|
sbcbidv |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑝 = ( +g ‘ 𝑚 ) ) → ( [ ( le ‘ 𝑚 ) / 𝑙 ] ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) ↔ [ ( le ‘ 𝑚 ) / 𝑙 ] ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 + 𝑐 ) 𝑙 ( 𝑏 + 𝑐 ) ) ) ) ) |
32 |
18 31
|
sbcied |
⊢ ( 𝑚 = 𝑀 → ( [ ( +g ‘ 𝑚 ) / 𝑝 ] [ ( le ‘ 𝑚 ) / 𝑙 ] ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) ↔ [ ( le ‘ 𝑚 ) / 𝑙 ] ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 + 𝑐 ) 𝑙 ( 𝑏 + 𝑐 ) ) ) ) ) |
33 |
|
fvexd |
⊢ ( 𝑚 = 𝑀 → ( le ‘ 𝑚 ) ∈ V ) |
34 |
|
simpr |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑙 = ( le ‘ 𝑚 ) ) → 𝑙 = ( le ‘ 𝑚 ) ) |
35 |
|
simpl |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑙 = ( le ‘ 𝑚 ) ) → 𝑚 = 𝑀 ) |
36 |
35
|
fveq2d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑙 = ( le ‘ 𝑚 ) ) → ( le ‘ 𝑚 ) = ( le ‘ 𝑀 ) ) |
37 |
34 36
|
eqtrd |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑙 = ( le ‘ 𝑚 ) ) → 𝑙 = ( le ‘ 𝑀 ) ) |
38 |
37 3
|
eqtr4di |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑙 = ( le ‘ 𝑚 ) ) → 𝑙 = ≤ ) |
39 |
38
|
breqd |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑙 = ( le ‘ 𝑚 ) ) → ( 𝑎 𝑙 𝑏 ↔ 𝑎 ≤ 𝑏 ) ) |
40 |
38
|
breqd |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑙 = ( le ‘ 𝑚 ) ) → ( ( 𝑎 + 𝑐 ) 𝑙 ( 𝑏 + 𝑐 ) ↔ ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) |
41 |
39 40
|
imbi12d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑙 = ( le ‘ 𝑚 ) ) → ( ( 𝑎 𝑙 𝑏 → ( 𝑎 + 𝑐 ) 𝑙 ( 𝑏 + 𝑐 ) ) ↔ ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) ) |
42 |
41
|
ralbidv |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑙 = ( le ‘ 𝑚 ) ) → ( ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 + 𝑐 ) 𝑙 ( 𝑏 + 𝑐 ) ) ↔ ∀ 𝑐 ∈ 𝐵 ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) ) |
43 |
42
|
2ralbidv |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑙 = ( le ‘ 𝑚 ) ) → ( ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 + 𝑐 ) 𝑙 ( 𝑏 + 𝑐 ) ) ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) ) |
44 |
43
|
anbi2d |
⊢ ( ( 𝑚 = 𝑀 ∧ 𝑙 = ( le ‘ 𝑚 ) ) → ( ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 + 𝑐 ) 𝑙 ( 𝑏 + 𝑐 ) ) ) ↔ ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) ) ) |
45 |
33 44
|
sbcied |
⊢ ( 𝑚 = 𝑀 → ( [ ( le ‘ 𝑚 ) / 𝑙 ] ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 + 𝑐 ) 𝑙 ( 𝑏 + 𝑐 ) ) ) ↔ ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) ) ) |
46 |
|
eleq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ∈ Toset ↔ 𝑀 ∈ Toset ) ) |
47 |
46
|
anbi1d |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) ↔ ( 𝑀 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) ) ) |
48 |
45 47
|
bitrd |
⊢ ( 𝑚 = 𝑀 → ( [ ( le ‘ 𝑚 ) / 𝑙 ] ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 𝑙 𝑏 → ( 𝑎 + 𝑐 ) 𝑙 ( 𝑏 + 𝑐 ) ) ) ↔ ( 𝑀 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) ) ) |
49 |
17 32 48
|
3bitrd |
⊢ ( 𝑚 = 𝑀 → ( [ ( Base ‘ 𝑚 ) / 𝑣 ] [ ( +g ‘ 𝑚 ) / 𝑝 ] [ ( le ‘ 𝑚 ) / 𝑙 ] ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) ↔ ( 𝑀 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) ) ) |
50 |
|
df-omnd |
⊢ oMnd = { 𝑚 ∈ Mnd ∣ [ ( Base ‘ 𝑚 ) / 𝑣 ] [ ( +g ‘ 𝑚 ) / 𝑝 ] [ ( le ‘ 𝑚 ) / 𝑙 ] ( 𝑚 ∈ Toset ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) } |
51 |
49 50
|
elrab2 |
⊢ ( 𝑀 ∈ oMnd ↔ ( 𝑀 ∈ Mnd ∧ ( 𝑀 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) ) ) |
52 |
|
3anass |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) ↔ ( 𝑀 ∈ Mnd ∧ ( 𝑀 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) ) ) |
53 |
51 52
|
bitr4i |
⊢ ( 𝑀 ∈ oMnd ↔ ( 𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ( 𝑎 ≤ 𝑏 → ( 𝑎 + 𝑐 ) ≤ ( 𝑏 + 𝑐 ) ) ) ) |