| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isomnd.0 |
|
| 2 |
|
isomnd.1 |
|
| 3 |
|
isomnd.2 |
|
| 4 |
|
fvexd |
|
| 5 |
|
simpr |
|
| 6 |
|
fveq2 |
|
| 7 |
6
|
adantr |
|
| 8 |
5 7
|
eqtrd |
|
| 9 |
8 1
|
eqtr4di |
|
| 10 |
|
raleq |
|
| 11 |
10
|
raleqbi1dv |
|
| 12 |
11
|
raleqbi1dv |
|
| 13 |
9 12
|
syl |
|
| 14 |
13
|
anbi2d |
|
| 15 |
14
|
sbcbidv |
|
| 16 |
15
|
sbcbidv |
|
| 17 |
4 16
|
sbcied |
|
| 18 |
|
fvexd |
|
| 19 |
|
simpr |
|
| 20 |
|
fveq2 |
|
| 21 |
20
|
adantr |
|
| 22 |
19 21
|
eqtrd |
|
| 23 |
22 2
|
eqtr4di |
|
| 24 |
23
|
oveqd |
|
| 25 |
23
|
oveqd |
|
| 26 |
24 25
|
breq12d |
|
| 27 |
26
|
imbi2d |
|
| 28 |
27
|
ralbidv |
|
| 29 |
28
|
2ralbidv |
|
| 30 |
29
|
anbi2d |
|
| 31 |
30
|
sbcbidv |
|
| 32 |
18 31
|
sbcied |
|
| 33 |
|
fvexd |
|
| 34 |
|
simpr |
|
| 35 |
|
simpl |
|
| 36 |
35
|
fveq2d |
|
| 37 |
34 36
|
eqtrd |
|
| 38 |
37 3
|
eqtr4di |
|
| 39 |
38
|
breqd |
|
| 40 |
38
|
breqd |
|
| 41 |
39 40
|
imbi12d |
|
| 42 |
41
|
ralbidv |
|
| 43 |
42
|
2ralbidv |
|
| 44 |
43
|
anbi2d |
|
| 45 |
33 44
|
sbcied |
|
| 46 |
|
eleq1 |
|
| 47 |
46
|
anbi1d |
|
| 48 |
45 47
|
bitrd |
|
| 49 |
17 32 48
|
3bitrd |
|
| 50 |
|
df-omnd |
|
| 51 |
49 50
|
elrab2 |
|
| 52 |
|
3anass |
|
| 53 |
51 52
|
bitr4i |
|