Metamath Proof Explorer


Definition df-omnd

Description: Define class of all right ordered monoids. An ordered monoid is a monoid with a total ordering compatible with its operation. It is possible to use this definition also for left ordered monoids, by applying it to ( oppGM ) . (Contributed by Thierry Arnoux, 13-Mar-2018)

Ref Expression
Assertion df-omnd oMnd = { 𝑔 ∈ Mnd ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g𝑔 ) / 𝑝 ] [ ( le ‘ 𝑔 ) / 𝑙 ] ( 𝑔 ∈ Toset ∧ ∀ 𝑎𝑣𝑏𝑣𝑐𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 comnd oMnd
1 vg 𝑔
2 cmnd Mnd
3 cbs Base
4 1 cv 𝑔
5 4 3 cfv ( Base ‘ 𝑔 )
6 vv 𝑣
7 cplusg +g
8 4 7 cfv ( +g𝑔 )
9 vp 𝑝
10 cple le
11 4 10 cfv ( le ‘ 𝑔 )
12 vl 𝑙
13 ctos Toset
14 4 13 wcel 𝑔 ∈ Toset
15 va 𝑎
16 6 cv 𝑣
17 vb 𝑏
18 vc 𝑐
19 15 cv 𝑎
20 12 cv 𝑙
21 17 cv 𝑏
22 19 21 20 wbr 𝑎 𝑙 𝑏
23 9 cv 𝑝
24 18 cv 𝑐
25 19 24 23 co ( 𝑎 𝑝 𝑐 )
26 21 24 23 co ( 𝑏 𝑝 𝑐 )
27 25 26 20 wbr ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 )
28 22 27 wi ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) )
29 28 18 16 wral 𝑐𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) )
30 29 17 16 wral 𝑏𝑣𝑐𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) )
31 30 15 16 wral 𝑎𝑣𝑏𝑣𝑐𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) )
32 14 31 wa ( 𝑔 ∈ Toset ∧ ∀ 𝑎𝑣𝑏𝑣𝑐𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) )
33 32 12 11 wsbc [ ( le ‘ 𝑔 ) / 𝑙 ] ( 𝑔 ∈ Toset ∧ ∀ 𝑎𝑣𝑏𝑣𝑐𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) )
34 33 9 8 wsbc [ ( +g𝑔 ) / 𝑝 ] [ ( le ‘ 𝑔 ) / 𝑙 ] ( 𝑔 ∈ Toset ∧ ∀ 𝑎𝑣𝑏𝑣𝑐𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) )
35 34 6 5 wsbc [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g𝑔 ) / 𝑝 ] [ ( le ‘ 𝑔 ) / 𝑙 ] ( 𝑔 ∈ Toset ∧ ∀ 𝑎𝑣𝑏𝑣𝑐𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) )
36 35 1 2 crab { 𝑔 ∈ Mnd ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g𝑔 ) / 𝑝 ] [ ( le ‘ 𝑔 ) / 𝑙 ] ( 𝑔 ∈ Toset ∧ ∀ 𝑎𝑣𝑏𝑣𝑐𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) }
37 0 36 wceq oMnd = { 𝑔 ∈ Mnd ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g𝑔 ) / 𝑝 ] [ ( le ‘ 𝑔 ) / 𝑙 ] ( 𝑔 ∈ Toset ∧ ∀ 𝑎𝑣𝑏𝑣𝑐𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) }