Step |
Hyp |
Ref |
Expression |
0 |
|
comnd |
⊢ oMnd |
1 |
|
vg |
⊢ 𝑔 |
2 |
|
cmnd |
⊢ Mnd |
3 |
|
cbs |
⊢ Base |
4 |
1
|
cv |
⊢ 𝑔 |
5 |
4 3
|
cfv |
⊢ ( Base ‘ 𝑔 ) |
6 |
|
vv |
⊢ 𝑣 |
7 |
|
cplusg |
⊢ +g |
8 |
4 7
|
cfv |
⊢ ( +g ‘ 𝑔 ) |
9 |
|
vp |
⊢ 𝑝 |
10 |
|
cple |
⊢ le |
11 |
4 10
|
cfv |
⊢ ( le ‘ 𝑔 ) |
12 |
|
vl |
⊢ 𝑙 |
13 |
|
ctos |
⊢ Toset |
14 |
4 13
|
wcel |
⊢ 𝑔 ∈ Toset |
15 |
|
va |
⊢ 𝑎 |
16 |
6
|
cv |
⊢ 𝑣 |
17 |
|
vb |
⊢ 𝑏 |
18 |
|
vc |
⊢ 𝑐 |
19 |
15
|
cv |
⊢ 𝑎 |
20 |
12
|
cv |
⊢ 𝑙 |
21 |
17
|
cv |
⊢ 𝑏 |
22 |
19 21 20
|
wbr |
⊢ 𝑎 𝑙 𝑏 |
23 |
9
|
cv |
⊢ 𝑝 |
24 |
18
|
cv |
⊢ 𝑐 |
25 |
19 24 23
|
co |
⊢ ( 𝑎 𝑝 𝑐 ) |
26 |
21 24 23
|
co |
⊢ ( 𝑏 𝑝 𝑐 ) |
27 |
25 26 20
|
wbr |
⊢ ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) |
28 |
22 27
|
wi |
⊢ ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) |
29 |
28 18 16
|
wral |
⊢ ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) |
30 |
29 17 16
|
wral |
⊢ ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) |
31 |
30 15 16
|
wral |
⊢ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) |
32 |
14 31
|
wa |
⊢ ( 𝑔 ∈ Toset ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) |
33 |
32 12 11
|
wsbc |
⊢ [ ( le ‘ 𝑔 ) / 𝑙 ] ( 𝑔 ∈ Toset ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) |
34 |
33 9 8
|
wsbc |
⊢ [ ( +g ‘ 𝑔 ) / 𝑝 ] [ ( le ‘ 𝑔 ) / 𝑙 ] ( 𝑔 ∈ Toset ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) |
35 |
34 6 5
|
wsbc |
⊢ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑝 ] [ ( le ‘ 𝑔 ) / 𝑙 ] ( 𝑔 ∈ Toset ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) |
36 |
35 1 2
|
crab |
⊢ { 𝑔 ∈ Mnd ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑝 ] [ ( le ‘ 𝑔 ) / 𝑙 ] ( 𝑔 ∈ Toset ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) } |
37 |
0 36
|
wceq |
⊢ oMnd = { 𝑔 ∈ Mnd ∣ [ ( Base ‘ 𝑔 ) / 𝑣 ] [ ( +g ‘ 𝑔 ) / 𝑝 ] [ ( le ‘ 𝑔 ) / 𝑙 ] ( 𝑔 ∈ Toset ∧ ∀ 𝑎 ∈ 𝑣 ∀ 𝑏 ∈ 𝑣 ∀ 𝑐 ∈ 𝑣 ( 𝑎 𝑙 𝑏 → ( 𝑎 𝑝 𝑐 ) 𝑙 ( 𝑏 𝑝 𝑐 ) ) ) } |