Metamath Proof Explorer


Theorem omndaddr

Description: In a right ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Hypotheses omndadd.0 𝐵 = ( Base ‘ 𝑀 )
omndadd.1 = ( le ‘ 𝑀 )
omndadd.2 + = ( +g𝑀 )
Assertion omndaddr ( ( ( oppg𝑀 ) ∈ oMnd ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝑌 ) → ( 𝑍 + 𝑋 ) ( 𝑍 + 𝑌 ) )

Proof

Step Hyp Ref Expression
1 omndadd.0 𝐵 = ( Base ‘ 𝑀 )
2 omndadd.1 = ( le ‘ 𝑀 )
3 omndadd.2 + = ( +g𝑀 )
4 eqid ( oppg𝑀 ) = ( oppg𝑀 )
5 4 1 oppgbas 𝐵 = ( Base ‘ ( oppg𝑀 ) )
6 4 2 oppgle = ( le ‘ ( oppg𝑀 ) )
7 eqid ( +g ‘ ( oppg𝑀 ) ) = ( +g ‘ ( oppg𝑀 ) )
8 5 6 7 omndadd ( ( ( oppg𝑀 ) ∈ oMnd ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝑌 ) → ( 𝑋 ( +g ‘ ( oppg𝑀 ) ) 𝑍 ) ( 𝑌 ( +g ‘ ( oppg𝑀 ) ) 𝑍 ) )
9 3 4 7 oppgplus ( 𝑋 ( +g ‘ ( oppg𝑀 ) ) 𝑍 ) = ( 𝑍 + 𝑋 )
10 3 4 7 oppgplus ( 𝑌 ( +g ‘ ( oppg𝑀 ) ) 𝑍 ) = ( 𝑍 + 𝑌 )
11 8 9 10 3brtr3g ( ( ( oppg𝑀 ) ∈ oMnd ∧ ( 𝑋𝐵𝑌𝐵𝑍𝐵 ) ∧ 𝑋 𝑌 ) → ( 𝑍 + 𝑋 ) ( 𝑍 + 𝑌 ) )