Step |
Hyp |
Ref |
Expression |
1 |
|
omndadd.0 |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
omndadd.1 |
⊢ ≤ = ( le ‘ 𝑀 ) |
3 |
|
omndadd.2 |
⊢ + = ( +g ‘ 𝑀 ) |
4 |
|
eqid |
⊢ ( oppg ‘ 𝑀 ) = ( oppg ‘ 𝑀 ) |
5 |
4 1
|
oppgbas |
⊢ 𝐵 = ( Base ‘ ( oppg ‘ 𝑀 ) ) |
6 |
4 2
|
oppgle |
⊢ ≤ = ( le ‘ ( oppg ‘ 𝑀 ) ) |
7 |
|
eqid |
⊢ ( +g ‘ ( oppg ‘ 𝑀 ) ) = ( +g ‘ ( oppg ‘ 𝑀 ) ) |
8 |
5 6 7
|
omndadd |
⊢ ( ( ( oppg ‘ 𝑀 ) ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ( +g ‘ ( oppg ‘ 𝑀 ) ) 𝑍 ) ≤ ( 𝑌 ( +g ‘ ( oppg ‘ 𝑀 ) ) 𝑍 ) ) |
9 |
3 4 7
|
oppgplus |
⊢ ( 𝑋 ( +g ‘ ( oppg ‘ 𝑀 ) ) 𝑍 ) = ( 𝑍 + 𝑋 ) |
10 |
3 4 7
|
oppgplus |
⊢ ( 𝑌 ( +g ‘ ( oppg ‘ 𝑀 ) ) 𝑍 ) = ( 𝑍 + 𝑌 ) |
11 |
8 9 10
|
3brtr3g |
⊢ ( ( ( oppg ‘ 𝑀 ) ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑍 + 𝑋 ) ≤ ( 𝑍 + 𝑌 ) ) |