Step |
Hyp |
Ref |
Expression |
1 |
|
omndadd.0 |
|- B = ( Base ` M ) |
2 |
|
omndadd.1 |
|- .<_ = ( le ` M ) |
3 |
|
omndadd.2 |
|- .+ = ( +g ` M ) |
4 |
|
eqid |
|- ( oppG ` M ) = ( oppG ` M ) |
5 |
4 1
|
oppgbas |
|- B = ( Base ` ( oppG ` M ) ) |
6 |
4 2
|
oppgle |
|- .<_ = ( le ` ( oppG ` M ) ) |
7 |
|
eqid |
|- ( +g ` ( oppG ` M ) ) = ( +g ` ( oppG ` M ) ) |
8 |
5 6 7
|
omndadd |
|- ( ( ( oppG ` M ) e. oMnd /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .<_ Y ) -> ( X ( +g ` ( oppG ` M ) ) Z ) .<_ ( Y ( +g ` ( oppG ` M ) ) Z ) ) |
9 |
3 4 7
|
oppgplus |
|- ( X ( +g ` ( oppG ` M ) ) Z ) = ( Z .+ X ) |
10 |
3 4 7
|
oppgplus |
|- ( Y ( +g ` ( oppG ` M ) ) Z ) = ( Z .+ Y ) |
11 |
8 9 10
|
3brtr3g |
|- ( ( ( oppG ` M ) e. oMnd /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .<_ Y ) -> ( Z .+ X ) .<_ ( Z .+ Y ) ) |