Description: less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oppglt.1 | |- O = ( oppG ` R ) |
|
oppgle.2 | |- .<_ = ( le ` R ) |
||
Assertion | oppgle | |- .<_ = ( le ` O ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppglt.1 | |- O = ( oppG ` R ) |
|
2 | oppgle.2 | |- .<_ = ( le ` R ) |
|
3 | df-ple | |- le = Slot ; 1 0 |
|
4 | 10nn | |- ; 1 0 e. NN |
|
5 | 2re | |- 2 e. RR |
|
6 | 2lt10 | |- 2 < ; 1 0 |
|
7 | 5 6 | gtneii | |- ; 1 0 =/= 2 |
8 | 1 3 4 7 | oppglem | |- ( le ` R ) = ( le ` O ) |
9 | 2 8 | eqtri | |- .<_ = ( le ` O ) |