Description: less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | oppglt.1 | |- O = ( oppG ` R ) |
|
| oppgle.2 | |- .<_ = ( le ` R ) |
||
| Assertion | oppgle | |- .<_ = ( le ` O ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppglt.1 | |- O = ( oppG ` R ) |
|
| 2 | oppgle.2 | |- .<_ = ( le ` R ) |
|
| 3 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 4 | 3 1 | oppgval | |- O = ( R sSet <. ( +g ` ndx ) , tpos ( +g ` R ) >. ) |
| 5 | pleid | |- le = Slot ( le ` ndx ) |
|
| 6 | plendxnplusgndx | |- ( le ` ndx ) =/= ( +g ` ndx ) |
|
| 7 | 4 5 6 | setsplusg | |- ( le ` R ) = ( le ` O ) |
| 8 | 2 7 | eqtri | |- .<_ = ( le ` O ) |