Metamath Proof Explorer


Theorem oppgle

Description: less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018)

Ref Expression
Hypotheses oppglt.1
|- O = ( oppG ` R )
oppgle.2
|- .<_ = ( le ` R )
Assertion oppgle
|- .<_ = ( le ` O )

Proof

Step Hyp Ref Expression
1 oppglt.1
 |-  O = ( oppG ` R )
2 oppgle.2
 |-  .<_ = ( le ` R )
3 eqid
 |-  ( +g ` R ) = ( +g ` R )
4 3 1 oppgval
 |-  O = ( R sSet <. ( +g ` ndx ) , tpos ( +g ` R ) >. )
5 pleid
 |-  le = Slot ( le ` ndx )
6 plendxnplusgndx
 |-  ( le ` ndx ) =/= ( +g ` ndx )
7 4 5 6 setsplusg
 |-  ( le ` R ) = ( le ` O )
8 2 7 eqtri
 |-  .<_ = ( le ` O )