Description: less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | oppglt.1 | ⊢ 𝑂 = ( oppg ‘ 𝑅 ) | |
oppgle.2 | ⊢ ≤ = ( le ‘ 𝑅 ) | ||
Assertion | oppgle | ⊢ ≤ = ( le ‘ 𝑂 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppglt.1 | ⊢ 𝑂 = ( oppg ‘ 𝑅 ) | |
2 | oppgle.2 | ⊢ ≤ = ( le ‘ 𝑅 ) | |
3 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
4 | 3 1 | oppgval | ⊢ 𝑂 = ( 𝑅 sSet 〈 ( +g ‘ ndx ) , tpos ( +g ‘ 𝑅 ) 〉 ) |
5 | pleid | ⊢ le = Slot ( le ‘ ndx ) | |
6 | plendxnplusgndx | ⊢ ( le ‘ ndx ) ≠ ( +g ‘ ndx ) | |
7 | 4 5 6 | setsplusg | ⊢ ( le ‘ 𝑅 ) = ( le ‘ 𝑂 ) |
8 | 2 7 | eqtri | ⊢ ≤ = ( le ‘ 𝑂 ) |