Metamath Proof Explorer
Description: less-than relation of an opposite group. (Contributed by Thierry
Arnoux, 13-Apr-2018)
|
|
Ref |
Expression |
|
Hypotheses |
oppglt.1 |
⊢ 𝑂 = ( oppg ‘ 𝑅 ) |
|
|
oppgle.2 |
⊢ ≤ = ( le ‘ 𝑅 ) |
|
Assertion |
oppgle |
⊢ ≤ = ( le ‘ 𝑂 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
oppglt.1 |
⊢ 𝑂 = ( oppg ‘ 𝑅 ) |
2 |
|
oppgle.2 |
⊢ ≤ = ( le ‘ 𝑅 ) |
3 |
|
df-ple |
⊢ le = Slot ; 1 0 |
4 |
|
10nn |
⊢ ; 1 0 ∈ ℕ |
5 |
|
2re |
⊢ 2 ∈ ℝ |
6 |
|
2lt10 |
⊢ 2 < ; 1 0 |
7 |
5 6
|
gtneii |
⊢ ; 1 0 ≠ 2 |
8 |
1 3 4 7
|
oppglem |
⊢ ( le ‘ 𝑅 ) = ( le ‘ 𝑂 ) |
9 |
2 8
|
eqtri |
⊢ ≤ = ( le ‘ 𝑂 ) |