Metamath Proof Explorer


Theorem oppgle

Description: less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018)

Ref Expression
Hypotheses oppglt.1 O=opp𝑔R
oppgle.2 ˙=R
Assertion oppgle ˙=O

Proof

Step Hyp Ref Expression
1 oppglt.1 O=opp𝑔R
2 oppgle.2 ˙=R
3 eqid +R=+R
4 3 1 oppgval O=RsSet+ndxtpos+R
5 pleid le=Slotndx
6 plendxnplusgndx ndx+ndx
7 4 5 6 setsplusg R=O
8 2 7 eqtri ˙=O