Step |
Hyp |
Ref |
Expression |
1 |
|
omndadd.0 |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
omndadd.1 |
⊢ ≤ = ( le ‘ 𝑀 ) |
3 |
|
omndadd.2 |
⊢ + = ( +g ‘ 𝑀 ) |
4 |
|
omndadd2d.m |
⊢ ( 𝜑 → 𝑀 ∈ oMnd ) |
5 |
|
omndadd2d.w |
⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) |
6 |
|
omndadd2d.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
omndadd2d.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
8 |
|
omndadd2d.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
9 |
|
omndadd2d.1 |
⊢ ( 𝜑 → 𝑋 ≤ 𝑍 ) |
10 |
|
omndadd2d.2 |
⊢ ( 𝜑 → 𝑌 ≤ 𝑊 ) |
11 |
|
omndadd2d.c |
⊢ ( 𝜑 → 𝑀 ∈ CMnd ) |
12 |
|
omndtos |
⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Toset ) |
13 |
|
tospos |
⊢ ( 𝑀 ∈ Toset → 𝑀 ∈ Poset ) |
14 |
4 12 13
|
3syl |
⊢ ( 𝜑 → 𝑀 ∈ Poset ) |
15 |
|
omndmnd |
⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Mnd ) |
16 |
4 15
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
17 |
1 3
|
mndcl |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
18 |
16 6 7 17
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
19 |
1 3
|
mndcl |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑍 + 𝑌 ) ∈ 𝐵 ) |
20 |
16 8 7 19
|
syl3anc |
⊢ ( 𝜑 → ( 𝑍 + 𝑌 ) ∈ 𝐵 ) |
21 |
1 3
|
mndcl |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑍 + 𝑊 ) ∈ 𝐵 ) |
22 |
16 8 5 21
|
syl3anc |
⊢ ( 𝜑 → ( 𝑍 + 𝑊 ) ∈ 𝐵 ) |
23 |
18 20 22
|
3jca |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ ( 𝑍 + 𝑌 ) ∈ 𝐵 ∧ ( 𝑍 + 𝑊 ) ∈ 𝐵 ) ) |
24 |
1 2 3
|
omndadd |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑍 ) → ( 𝑋 + 𝑌 ) ≤ ( 𝑍 + 𝑌 ) ) |
25 |
4 6 8 7 9 24
|
syl131anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ≤ ( 𝑍 + 𝑌 ) ) |
26 |
1 2 3
|
omndadd |
⊢ ( ( 𝑀 ∈ oMnd ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ 𝑌 ≤ 𝑊 ) → ( 𝑌 + 𝑍 ) ≤ ( 𝑊 + 𝑍 ) ) |
27 |
4 7 5 8 10 26
|
syl131anc |
⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) ≤ ( 𝑊 + 𝑍 ) ) |
28 |
1 3
|
cmncom |
⊢ ( ( 𝑀 ∈ CMnd ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 + 𝑍 ) = ( 𝑍 + 𝑌 ) ) |
29 |
11 7 8 28
|
syl3anc |
⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) = ( 𝑍 + 𝑌 ) ) |
30 |
1 3
|
cmncom |
⊢ ( ( 𝑀 ∈ CMnd ∧ 𝑊 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑊 + 𝑍 ) = ( 𝑍 + 𝑊 ) ) |
31 |
11 5 8 30
|
syl3anc |
⊢ ( 𝜑 → ( 𝑊 + 𝑍 ) = ( 𝑍 + 𝑊 ) ) |
32 |
27 29 31
|
3brtr3d |
⊢ ( 𝜑 → ( 𝑍 + 𝑌 ) ≤ ( 𝑍 + 𝑊 ) ) |
33 |
1 2
|
postr |
⊢ ( ( 𝑀 ∈ Poset ∧ ( ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ ( 𝑍 + 𝑌 ) ∈ 𝐵 ∧ ( 𝑍 + 𝑊 ) ∈ 𝐵 ) ) → ( ( ( 𝑋 + 𝑌 ) ≤ ( 𝑍 + 𝑌 ) ∧ ( 𝑍 + 𝑌 ) ≤ ( 𝑍 + 𝑊 ) ) → ( 𝑋 + 𝑌 ) ≤ ( 𝑍 + 𝑊 ) ) ) |
34 |
33
|
imp |
⊢ ( ( ( 𝑀 ∈ Poset ∧ ( ( 𝑋 + 𝑌 ) ∈ 𝐵 ∧ ( 𝑍 + 𝑌 ) ∈ 𝐵 ∧ ( 𝑍 + 𝑊 ) ∈ 𝐵 ) ) ∧ ( ( 𝑋 + 𝑌 ) ≤ ( 𝑍 + 𝑌 ) ∧ ( 𝑍 + 𝑌 ) ≤ ( 𝑍 + 𝑊 ) ) ) → ( 𝑋 + 𝑌 ) ≤ ( 𝑍 + 𝑊 ) ) |
35 |
14 23 25 32 34
|
syl22anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ≤ ( 𝑍 + 𝑊 ) ) |