Description: A left-ordered monoid is a monoid. (Contributed by Thierry Arnoux, 13-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | omndmnd | ⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Mnd ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
2 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
3 | eqid | ⊢ ( le ‘ 𝑀 ) = ( le ‘ 𝑀 ) | |
4 | 1 2 3 | isomnd | ⊢ ( 𝑀 ∈ oMnd ↔ ( 𝑀 ∈ Mnd ∧ 𝑀 ∈ Toset ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑀 ) ∀ 𝑏 ∈ ( Base ‘ 𝑀 ) ∀ 𝑐 ∈ ( Base ‘ 𝑀 ) ( 𝑎 ( le ‘ 𝑀 ) 𝑏 → ( 𝑎 ( +g ‘ 𝑀 ) 𝑐 ) ( le ‘ 𝑀 ) ( 𝑏 ( +g ‘ 𝑀 ) 𝑐 ) ) ) ) |
5 | 4 | simp1bi | ⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Mnd ) |