Description: A left-ordered monoid is a monoid. (Contributed by Thierry Arnoux, 13-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | omndmnd | |- ( M e. oMnd -> M e. Mnd ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
2 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
3 | eqid | |- ( le ` M ) = ( le ` M ) |
|
4 | 1 2 3 | isomnd | |- ( M e. oMnd <-> ( M e. Mnd /\ M e. Toset /\ A. a e. ( Base ` M ) A. b e. ( Base ` M ) A. c e. ( Base ` M ) ( a ( le ` M ) b -> ( a ( +g ` M ) c ) ( le ` M ) ( b ( +g ` M ) c ) ) ) ) |
5 | 4 | simp1bi | |- ( M e. oMnd -> M e. Mnd ) |