Metamath Proof Explorer


Theorem omndmnd

Description: A left-ordered monoid is a monoid. (Contributed by Thierry Arnoux, 13-Mar-2018)

Ref Expression
Assertion omndmnd
|- ( M e. oMnd -> M e. Mnd )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( Base ` M ) = ( Base ` M )
2 eqid
 |-  ( +g ` M ) = ( +g ` M )
3 eqid
 |-  ( le ` M ) = ( le ` M )
4 1 2 3 isomnd
 |-  ( M e. oMnd <-> ( M e. Mnd /\ M e. Toset /\ A. a e. ( Base ` M ) A. b e. ( Base ` M ) A. c e. ( Base ` M ) ( a ( le ` M ) b -> ( a ( +g ` M ) c ) ( le ` M ) ( b ( +g ` M ) c ) ) ) )
5 4 simp1bi
 |-  ( M e. oMnd -> M e. Mnd )