Step |
Hyp |
Ref |
Expression |
1 |
|
ornglmullt.b |
|- B = ( Base ` R ) |
2 |
|
ornglmullt.t |
|- .x. = ( .r ` R ) |
3 |
|
ornglmullt.0 |
|- .0. = ( 0g ` R ) |
4 |
|
ornglmullt.1 |
|- ( ph -> R e. oRing ) |
5 |
|
ornglmullt.2 |
|- ( ph -> X e. B ) |
6 |
|
ornglmullt.3 |
|- ( ph -> Y e. B ) |
7 |
|
ornglmullt.4 |
|- ( ph -> Z e. B ) |
8 |
|
orngmulle.l |
|- .<_ = ( le ` R ) |
9 |
|
orngmulle.5 |
|- ( ph -> X .<_ Y ) |
10 |
|
orngmulle.6 |
|- ( ph -> .0. .<_ Z ) |
11 |
|
orngogrp |
|- ( R e. oRing -> R e. oGrp ) |
12 |
4 11
|
syl |
|- ( ph -> R e. oGrp ) |
13 |
|
isogrp |
|- ( R e. oGrp <-> ( R e. Grp /\ R e. oMnd ) ) |
14 |
13
|
simprbi |
|- ( R e. oGrp -> R e. oMnd ) |
15 |
12 14
|
syl |
|- ( ph -> R e. oMnd ) |
16 |
|
orngring |
|- ( R e. oRing -> R e. Ring ) |
17 |
4 16
|
syl |
|- ( ph -> R e. Ring ) |
18 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
19 |
17 18
|
syl |
|- ( ph -> R e. Grp ) |
20 |
1 3
|
grpidcl |
|- ( R e. Grp -> .0. e. B ) |
21 |
19 20
|
syl |
|- ( ph -> .0. e. B ) |
22 |
1 2
|
ringcl |
|- ( ( R e. Ring /\ Z e. B /\ Y e. B ) -> ( Z .x. Y ) e. B ) |
23 |
17 7 6 22
|
syl3anc |
|- ( ph -> ( Z .x. Y ) e. B ) |
24 |
1 2
|
ringcl |
|- ( ( R e. Ring /\ Z e. B /\ X e. B ) -> ( Z .x. X ) e. B ) |
25 |
17 7 5 24
|
syl3anc |
|- ( ph -> ( Z .x. X ) e. B ) |
26 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
27 |
1 26
|
grpsubcl |
|- ( ( R e. Grp /\ ( Z .x. Y ) e. B /\ ( Z .x. X ) e. B ) -> ( ( Z .x. Y ) ( -g ` R ) ( Z .x. X ) ) e. B ) |
28 |
19 23 25 27
|
syl3anc |
|- ( ph -> ( ( Z .x. Y ) ( -g ` R ) ( Z .x. X ) ) e. B ) |
29 |
1 26
|
grpsubcl |
|- ( ( R e. Grp /\ Y e. B /\ X e. B ) -> ( Y ( -g ` R ) X ) e. B ) |
30 |
19 6 5 29
|
syl3anc |
|- ( ph -> ( Y ( -g ` R ) X ) e. B ) |
31 |
1 3 26
|
grpsubid |
|- ( ( R e. Grp /\ X e. B ) -> ( X ( -g ` R ) X ) = .0. ) |
32 |
19 5 31
|
syl2anc |
|- ( ph -> ( X ( -g ` R ) X ) = .0. ) |
33 |
1 8 26
|
ogrpsub |
|- ( ( R e. oGrp /\ ( X e. B /\ Y e. B /\ X e. B ) /\ X .<_ Y ) -> ( X ( -g ` R ) X ) .<_ ( Y ( -g ` R ) X ) ) |
34 |
12 5 6 5 9 33
|
syl131anc |
|- ( ph -> ( X ( -g ` R ) X ) .<_ ( Y ( -g ` R ) X ) ) |
35 |
32 34
|
eqbrtrrd |
|- ( ph -> .0. .<_ ( Y ( -g ` R ) X ) ) |
36 |
1 8 3 2
|
orngmul |
|- ( ( R e. oRing /\ ( Z e. B /\ .0. .<_ Z ) /\ ( ( Y ( -g ` R ) X ) e. B /\ .0. .<_ ( Y ( -g ` R ) X ) ) ) -> .0. .<_ ( Z .x. ( Y ( -g ` R ) X ) ) ) |
37 |
4 7 10 30 35 36
|
syl122anc |
|- ( ph -> .0. .<_ ( Z .x. ( Y ( -g ` R ) X ) ) ) |
38 |
1 2 26 17 7 6 5
|
ringsubdi |
|- ( ph -> ( Z .x. ( Y ( -g ` R ) X ) ) = ( ( Z .x. Y ) ( -g ` R ) ( Z .x. X ) ) ) |
39 |
37 38
|
breqtrd |
|- ( ph -> .0. .<_ ( ( Z .x. Y ) ( -g ` R ) ( Z .x. X ) ) ) |
40 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
41 |
1 8 40
|
omndadd |
|- ( ( R e. oMnd /\ ( .0. e. B /\ ( ( Z .x. Y ) ( -g ` R ) ( Z .x. X ) ) e. B /\ ( Z .x. X ) e. B ) /\ .0. .<_ ( ( Z .x. Y ) ( -g ` R ) ( Z .x. X ) ) ) -> ( .0. ( +g ` R ) ( Z .x. X ) ) .<_ ( ( ( Z .x. Y ) ( -g ` R ) ( Z .x. X ) ) ( +g ` R ) ( Z .x. X ) ) ) |
42 |
15 21 28 25 39 41
|
syl131anc |
|- ( ph -> ( .0. ( +g ` R ) ( Z .x. X ) ) .<_ ( ( ( Z .x. Y ) ( -g ` R ) ( Z .x. X ) ) ( +g ` R ) ( Z .x. X ) ) ) |
43 |
1 40 3
|
grplid |
|- ( ( R e. Grp /\ ( Z .x. X ) e. B ) -> ( .0. ( +g ` R ) ( Z .x. X ) ) = ( Z .x. X ) ) |
44 |
19 25 43
|
syl2anc |
|- ( ph -> ( .0. ( +g ` R ) ( Z .x. X ) ) = ( Z .x. X ) ) |
45 |
1 40 26
|
grpnpcan |
|- ( ( R e. Grp /\ ( Z .x. Y ) e. B /\ ( Z .x. X ) e. B ) -> ( ( ( Z .x. Y ) ( -g ` R ) ( Z .x. X ) ) ( +g ` R ) ( Z .x. X ) ) = ( Z .x. Y ) ) |
46 |
19 23 25 45
|
syl3anc |
|- ( ph -> ( ( ( Z .x. Y ) ( -g ` R ) ( Z .x. X ) ) ( +g ` R ) ( Z .x. X ) ) = ( Z .x. Y ) ) |
47 |
42 44 46
|
3brtr3d |
|- ( ph -> ( Z .x. X ) .<_ ( Z .x. Y ) ) |