Description: An isomorphism preserves the property of being a partial order. (Contributed by Stefan O'Rear, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isopo | |- ( H Isom R , S ( A , B ) -> ( R Po A <-> S Po B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isocnv | |- ( H Isom R , S ( A , B ) -> `' H Isom S , R ( B , A ) ) |
|
| 2 | isopolem | |- ( `' H Isom S , R ( B , A ) -> ( R Po A -> S Po B ) ) |
|
| 3 | 1 2 | syl | |- ( H Isom R , S ( A , B ) -> ( R Po A -> S Po B ) ) |
| 4 | isopolem | |- ( H Isom R , S ( A , B ) -> ( S Po B -> R Po A ) ) |
|
| 5 | 3 4 | impbid | |- ( H Isom R , S ( A , B ) -> ( R Po A <-> S Po B ) ) |