Metamath Proof Explorer


Theorem issoi

Description: An irreflexive, transitive, linear relation is a strict ordering. (Contributed by NM, 21-Jan-1996) (Revised by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypotheses issoi.1
|- ( x e. A -> -. x R x )
issoi.2
|- ( ( x e. A /\ y e. A /\ z e. A ) -> ( ( x R y /\ y R z ) -> x R z ) )
issoi.3
|- ( ( x e. A /\ y e. A ) -> ( x R y \/ x = y \/ y R x ) )
Assertion issoi
|- R Or A

Proof

Step Hyp Ref Expression
1 issoi.1
 |-  ( x e. A -> -. x R x )
2 issoi.2
 |-  ( ( x e. A /\ y e. A /\ z e. A ) -> ( ( x R y /\ y R z ) -> x R z ) )
3 issoi.3
 |-  ( ( x e. A /\ y e. A ) -> ( x R y \/ x = y \/ y R x ) )
4 1 adantl
 |-  ( ( T. /\ x e. A ) -> -. x R x )
5 2 adantl
 |-  ( ( T. /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( ( x R y /\ y R z ) -> x R z ) )
6 4 5 ispod
 |-  ( T. -> R Po A )
7 3 adantl
 |-  ( ( T. /\ ( x e. A /\ y e. A ) ) -> ( x R y \/ x = y \/ y R x ) )
8 6 7 issod
 |-  ( T. -> R Or A )
9 8 mptru
 |-  R Or A