| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isumneg.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | isumneg.2 |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | isumneg.3 |  |-  ( ph -> sum_ k e. Z A e. CC ) | 
						
							| 4 |  | isumneg.4 |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) | 
						
							| 5 |  | isumneg.5 |  |-  ( ( ph /\ k e. Z ) -> A e. CC ) | 
						
							| 6 |  | isumneg.6 |  |-  ( ph -> seq M ( + , F ) e. dom ~~> ) | 
						
							| 7 | 5 | mulm1d |  |-  ( ( ph /\ k e. Z ) -> ( -u 1 x. A ) = -u A ) | 
						
							| 8 | 7 | eqcomd |  |-  ( ( ph /\ k e. Z ) -> -u A = ( -u 1 x. A ) ) | 
						
							| 9 | 8 | sumeq2dv |  |-  ( ph -> sum_ k e. Z -u A = sum_ k e. Z ( -u 1 x. A ) ) | 
						
							| 10 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 11 | 10 | negcld |  |-  ( ph -> -u 1 e. CC ) | 
						
							| 12 | 1 2 4 5 6 11 | isummulc2 |  |-  ( ph -> ( -u 1 x. sum_ k e. Z A ) = sum_ k e. Z ( -u 1 x. A ) ) | 
						
							| 13 | 3 | mulm1d |  |-  ( ph -> ( -u 1 x. sum_ k e. Z A ) = -u sum_ k e. Z A ) | 
						
							| 14 | 9 12 13 | 3eqtr2d |  |-  ( ph -> sum_ k e. Z -u A = -u sum_ k e. Z A ) |