| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isumneg.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | isumneg.2 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 3 |  | isumneg.3 | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝑍 𝐴  ∈  ℂ ) | 
						
							| 4 |  | isumneg.4 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑘 )  =  𝐴 ) | 
						
							| 5 |  | isumneg.5 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐴  ∈  ℂ ) | 
						
							| 6 |  | isumneg.6 | ⊢ ( 𝜑  →  seq 𝑀 (  +  ,  𝐹 )  ∈  dom   ⇝  ) | 
						
							| 7 | 5 | mulm1d | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( - 1  ·  𝐴 )  =  - 𝐴 ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  - 𝐴  =  ( - 1  ·  𝐴 ) ) | 
						
							| 9 | 8 | sumeq2dv | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝑍 - 𝐴  =  Σ 𝑘  ∈  𝑍 ( - 1  ·  𝐴 ) ) | 
						
							| 10 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 11 | 10 | negcld | ⊢ ( 𝜑  →  - 1  ∈  ℂ ) | 
						
							| 12 | 1 2 4 5 6 11 | isummulc2 | ⊢ ( 𝜑  →  ( - 1  ·  Σ 𝑘  ∈  𝑍 𝐴 )  =  Σ 𝑘  ∈  𝑍 ( - 1  ·  𝐴 ) ) | 
						
							| 13 | 3 | mulm1d | ⊢ ( 𝜑  →  ( - 1  ·  Σ 𝑘  ∈  𝑍 𝐴 )  =  - Σ 𝑘  ∈  𝑍 𝐴 ) | 
						
							| 14 | 9 12 13 | 3eqtr2d | ⊢ ( 𝜑  →  Σ 𝑘  ∈  𝑍 - 𝐴  =  - Σ 𝑘  ∈  𝑍 𝐴 ) |