| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climrec.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
climrec.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
climrec.3 |
⊢ ( 𝜑 → 𝐺 ⇝ 𝐴 ) |
| 4 |
|
climrec.4 |
⊢ ( 𝜑 → 𝐴 ≠ 0 ) |
| 5 |
|
climrec.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ( ℂ ∖ { 0 } ) ) |
| 6 |
|
climrec.6 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) |
| 7 |
|
climrec.7 |
⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) |
| 8 |
|
climcl |
⊢ ( 𝐺 ⇝ 𝐴 → 𝐴 ∈ ℂ ) |
| 9 |
3 8
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 10 |
4
|
neneqd |
⊢ ( 𝜑 → ¬ 𝐴 = 0 ) |
| 11 |
|
c0ex |
⊢ 0 ∈ V |
| 12 |
11
|
elsn2 |
⊢ ( 𝐴 ∈ { 0 } ↔ 𝐴 = 0 ) |
| 13 |
10 12
|
sylnibr |
⊢ ( 𝜑 → ¬ 𝐴 ∈ { 0 } ) |
| 14 |
9 13
|
eldifd |
⊢ ( 𝜑 → 𝐴 ∈ ( ℂ ∖ { 0 } ) ) |
| 15 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) = ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ) |
| 16 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑤 = 𝑧 ) → 𝑤 = 𝑧 ) |
| 17 |
16
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ℂ ∖ { 0 } ) ) ∧ 𝑤 = 𝑧 ) → ( 1 / 𝑤 ) = ( 1 / 𝑧 ) ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℂ ∖ { 0 } ) ) → 𝑧 ∈ ( ℂ ∖ { 0 } ) ) |
| 19 |
18
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℂ ∖ { 0 } ) ) → 𝑧 ∈ ℂ ) |
| 20 |
|
eldifsni |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → 𝑧 ≠ 0 ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℂ ∖ { 0 } ) ) → 𝑧 ≠ 0 ) |
| 22 |
19 21
|
reccld |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℂ ∖ { 0 } ) ) → ( 1 / 𝑧 ) ∈ ℂ ) |
| 23 |
15 17 18 22
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝑧 ) = ( 1 / 𝑧 ) ) |
| 24 |
23 22
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ℂ ∖ { 0 } ) ) → ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝑧 ) ∈ ℂ ) |
| 25 |
|
eqid |
⊢ ( if ( 1 ≤ ( ( abs ‘ 𝐴 ) · 𝑥 ) , 1 , ( ( abs ‘ 𝐴 ) · 𝑥 ) ) · ( ( abs ‘ 𝐴 ) / 2 ) ) = ( if ( 1 ≤ ( ( abs ‘ 𝐴 ) · 𝑥 ) , 1 , ( ( abs ‘ 𝐴 ) · 𝑥 ) ) · ( ( abs ‘ 𝐴 ) / 2 ) ) |
| 26 |
25
|
reccn2 |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝑥 ) ) |
| 27 |
14 26
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝑥 ) ) |
| 28 |
|
eqidd |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) = ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ) |
| 29 |
|
simpr |
⊢ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑤 = 𝑧 ) → 𝑤 = 𝑧 ) |
| 30 |
29
|
oveq2d |
⊢ ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) ∧ 𝑤 = 𝑧 ) → ( 1 / 𝑤 ) = ( 1 / 𝑧 ) ) |
| 31 |
|
id |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → 𝑧 ∈ ( ℂ ∖ { 0 } ) ) |
| 32 |
|
eldifi |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → 𝑧 ∈ ℂ ) |
| 33 |
32 20
|
reccld |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( 1 / 𝑧 ) ∈ ℂ ) |
| 34 |
28 30 31 33
|
fvmptd |
⊢ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝑧 ) = ( 1 / 𝑧 ) ) |
| 35 |
34
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝑥 ) ) ) ∧ 𝑧 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 ) → ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝑧 ) = ( 1 / 𝑧 ) ) |
| 36 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) = ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ) |
| 37 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 = 𝐴 ) → 𝑤 = 𝐴 ) |
| 38 |
37
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑤 = 𝐴 ) → ( 1 / 𝑤 ) = ( 1 / 𝐴 ) ) |
| 39 |
9 4
|
reccld |
⊢ ( 𝜑 → ( 1 / 𝐴 ) ∈ ℂ ) |
| 40 |
36 38 14 39
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝐴 ) = ( 1 / 𝐴 ) ) |
| 41 |
40
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝑥 ) ) ) ∧ 𝑧 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 ) → ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝐴 ) = ( 1 / 𝐴 ) ) |
| 42 |
35 41
|
oveq12d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝑥 ) ) ) ∧ 𝑧 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 ) → ( ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝑧 ) − ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝐴 ) ) = ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) |
| 43 |
42
|
fveq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝑥 ) ) ) ∧ 𝑧 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 ) → ( abs ‘ ( ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝑧 ) − ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝐴 ) ) ) = ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) ) |
| 44 |
31
|
ad2antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝑥 ) ) ) ∧ 𝑧 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 ) → 𝑧 ∈ ( ℂ ∖ { 0 } ) ) |
| 45 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝑥 ) ) ) ∧ 𝑧 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 ) → ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 ) |
| 46 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝑥 ) ) ) ∧ 𝑧 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 ) → ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝑥 ) ) ) |
| 47 |
44 45 46
|
mp2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝑥 ) ) ) ∧ 𝑧 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 ) → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝑥 ) |
| 48 |
43 47
|
eqbrtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝑥 ) ) ) ∧ 𝑧 ∈ ( ℂ ∖ { 0 } ) ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 ) → ( abs ‘ ( ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝑧 ) − ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝐴 ) ) ) < 𝑥 ) |
| 49 |
48
|
exp41 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝑥 ) ) → ( 𝑧 ∈ ( ℂ ∖ { 0 } ) → ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝑧 ) − ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝐴 ) ) ) < 𝑥 ) ) ) ) |
| 50 |
49
|
ralimdv2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∀ 𝑧 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝑥 ) → ∀ 𝑧 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝑧 ) − ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝐴 ) ) ) < 𝑥 ) ) ) |
| 51 |
50
|
reximdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 1 / 𝑧 ) − ( 1 / 𝐴 ) ) ) < 𝑥 ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝑧 ) − ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝐴 ) ) ) < 𝑥 ) ) ) |
| 52 |
27 51
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ( ℂ ∖ { 0 } ) ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝑧 ) − ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 53 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) = ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ) |
| 54 |
|
oveq2 |
⊢ ( 𝑤 = ( 𝐺 ‘ 𝑘 ) → ( 1 / 𝑤 ) = ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) |
| 55 |
54
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑤 = ( 𝐺 ‘ 𝑘 ) ) → ( 1 / 𝑤 ) = ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) |
| 56 |
5
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 57 |
|
eldifsni |
⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ ( ℂ ∖ { 0 } ) → ( 𝐺 ‘ 𝑘 ) ≠ 0 ) |
| 58 |
5 57
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ≠ 0 ) |
| 59 |
56 58
|
reccld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 1 / ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 60 |
53 55 5 59
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ ( 𝐺 ‘ 𝑘 ) ) = ( 1 / ( 𝐺 ‘ 𝑘 ) ) ) |
| 61 |
6 60
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 62 |
1 2 14 24 3 7 52 5 61
|
climcn1 |
⊢ ( 𝜑 → 𝐻 ⇝ ( ( 𝑤 ∈ ( ℂ ∖ { 0 } ) ↦ ( 1 / 𝑤 ) ) ‘ 𝐴 ) ) |
| 63 |
62 40
|
breqtrd |
⊢ ( 𝜑 → 𝐻 ⇝ ( 1 / 𝐴 ) ) |